المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تربية الماشية في روسيا الفيدرالية
2024-11-06
تربية ماشية اللبن في البلاد الأفريقية
2024-11-06
تربية الماشية في جمهورية مصر العربية
2024-11-06
The structure of the tone-unit
2024-11-06
IIntonation The tone-unit
2024-11-06
Tones on other words
2024-11-06


Borwein Conjectures  
  
1554   06:03 مساءً   date: 21-8-2019
Author : Andrews, G. E.
Book or Source : "Partitions with Prescribed Hook Differences." Europ. J. Combin. 8
Page and Part : ...


Read More
Date: 3-6-2019 1505
Date: 23-5-2019 1670
Date: 15-6-2019 1426

Borwein Conjectures

Use the definition of the q-series

 (a;q)_n=product_(j=0)^(n-1)(1-aq^j)

(1)

and define

 [N; M]=((q^(N-M+1);q)_M)/((q;q)_m).

(2)

Then P. Borwein has conjectured that (1) the polynomials A_n(q)B_n(q), and C_n(q) defined by

 (q;q^3)_n(q^2;q^3)_n=A_n(q^3)-qB_n(q^3)-q^2C_n(q^3)

(3)

have nonnegative coefficients, (2) the polynomials A_n^*(q)B_n^*(q), and C_n^*(q) defined by

 (q;q^3)_n^2(q^2;q^3)_n^2=A_n^*(q^3)-qB_n^*(q^3)-q^2C_n^*(q^3)

(4)

have nonnegative coefficients, (3) the polynomials A_n^*(q)B_n^*(q)C_n^*(q)D_n^*(q), and E_n^*(q) defined by

 (q;q^5)_n(q^2;q^5)_n(q^3;q^5)_n(q^4;q^5)_n= 
 A_n^*(q^5)-qB_n^*(q^5)-q^2C_n^*(q^5)-q^3D_n^*(q^5)-q^4E_n^*(q^5)

(5)

have nonnegative coefficients, (4) the polynomials A_n^|(m,n,t,q)B_n^|(m,n,t,q), and C_n^|(m,n,t,q) defined by

 (q;q^3)_m(q^2;q^3)_m(zq;q^3)_n(zq^2;q^3)_n 
 =sum_(t=0)^(2m)z^t[A^|(m,n,t,q^3)-qB^|(m,n,t,q^3)-q^2C^|(m,n,t,q^3)]

(6)

have nonnegative coefficients, (5) for k odd and 1<=a<=k/2, consider the expansion

 (q^a;q^k)_m(q^(k-a);q^k)_n=sum_(nu=(1-k)/2)^((k-1)/2)(-1)^nuq^(k(nu^2+nu)/2-anu)F_nu(q^k)

(7)

with

 F_nu(q)=sum_(j=-infty)^infty(-1)^jq^(j(k^2j+2knu+k-2a)/2)[m+n; m+nu+kj],

(8)

then if a is relatively prime to k and m=n, the coefficients of F_nu(q) are nonnegative, and (6) given alpha+beta<2K and -K+beta<=n-m<=K-alpha, consider

 G(alpha,beta,K;q)=sum_(q)(-1)^jq^(j[K(alpha+beta)j+K(alpha+beta)]/2)[m+n; m+Kj],

(9)

the generating function for partitions inside an m×n rectangle with hook difference conditions specified by alphabeta, and K. Let alpha and beta be positive rational numbers and k>1 an integer such that alphak and betak are integers. then if 1<=alpha+beta<=2k-1 (with strict inequalities for k=2) and -k+beta<=n-m<=k-alpha, then g(alpha,beta,k;q) has nonnegative coefficients.


REFERENCES:

Andrews, G. E. et al. "Partitions with Prescribed Hook Differences." Europ. J. Combin. 8, 341-350, 1987.

Bressoud, D. M. "The Borwein Conjecture and Partitions with Prescribed Hook Differences." Electronic J. Combinatorics 3, No. 2, R4, 1-14, 1996. http://www.combinatorics.org/Volume_3/Abstracts/v3i2r4.html.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.