Read More
Date: 22-8-2019
![]()
Date: 8-9-2019
![]()
Date: 25-5-2019
![]() |
The q-analog of the binomial theorem
![]() |
(1) |
is given by
![]() |
(2) |
Written as a q-series, the identity becomes
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
where is a
-Pochhammer symbol and
is a
-hypergeometric function (Heine 1847, p. 303; Andrews 1986). The Cauchy binomial theorem is a special case of this general theorem.
REFERENCES:
Andrews, G. E. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc., p. 10, 1986.
Bhatnagar, G. Inverse Relations, Generalized Bibasic Series, and their U(n) Extensions. Ph.D. thesis. Ohio State University, p. 24, 1995.
Gasper, G. "Elementary Derivations of Summation and Transformation Formulas for q-Series." In Fields Inst. Comm. 14 (Ed. M. E. H. Ismail et al. ), pp. 55-70, 1997.
Gasper, G. and Rahman, M. Basic Hypergeometric Series. Cambridge, England: Cambridge University Press, p. 7, 1990.
Heine, E. "Untersuchungen über die Reihe ." J. reine angew. Math. 34, 285-328, 1847.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, p. 26, 1998.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
مؤسسة السجناء السياسيين: سجلنا 120 ألفًا من ضحايا السجون والاعتقالات في عهد النظام السابق
|
|
|