Read More
Date: 26-6-2019
![]()
Date: 12-10-2018
![]()
Date: 18-6-2019
![]() |
An inflection point is a point on a curve at which the sign of the curvature (i.e., the concavity) changes. Inflection points may be stationary points, but are not local maxima or local minima. For example, for the curve plotted above, the point
is an inflection point.
The first derivative test can sometimes distinguish inflection points from extrema for differentiable functions .
The second derivative test is also useful. A necessary condition for to be an inflection point is
. A sufficient condition requires
and
to have opposite signs in the neighborhood of
(Bronshtein and Semendyayev 2004, p. 231).
REFERENCES:
Bronshtein, I. N.; Semendyayev, K. A.; Musiol, G.; and Muehlig, H. Handbook of Mathematics, 4th ed. New York: Springer-Verlag, 2004.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
مؤسسة السجناء السياسيين: سجلنا 120 ألفًا من ضحايا السجون والاعتقالات في عهد النظام السابق
|
|
|