Read More
Date: 25-5-2019
![]()
Date: 22-4-2019
![]()
Date: 21-8-2018
![]() |
![]() |
(1) |
where is a generalized hypergeometric function and
is the gamma function. It can be derived from the Dougall-Ramanujan identity and written in the symmetric form
![]() |
(2) |
for
![]() |
(3) |
with a nonpositive integer and
the Pochhammer symbol (Bailey 1935, p. 9; Petkovšek et al. 1996; Koepf 1998, p. 32). If one of
,
, and
is nonpositive but it is not known which, an alternative formulation due to W. Gosper (pers. comm.) gives the form
![]() |
(4) |
which is symmetric in and
.
If instead
![]() |
(5) |
then
![]() |
(6) |
(W. Gosper, pers. comm.).
REFERENCES:
Bailey, W. N. "Saalschütz's Theorem." §2.2 in Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, p. 9, 1935.
Dougall, J. "On Vandermonde's Theorem and Some More General Expansions." Proc. Edinburgh Math. Soc. 25, 114-132, 1907.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, p. 104, 1999.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.
Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, pp. 43 and 126, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.
Saalschütz, L. "Eine Summationsformel." Z. für Math. u. Phys. 35, 186-188, 1890.
Saalschütz, L. "Über einen Spezialfall der hypergeometrischen Reihe dritter Ordnung." Z. für Math. u. Phys. 36, 278-295 and 321-327, 1891.
Shepard, W. F. "Summation of the Coefficients of Some Terminating Hypergeometric Series." Proc. London Math. Soc. 10, 469-478, 1912.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|