Read More
Date: 22-7-2019
2809
Date: 12-10-2018
1784
Date: 22-8-2019
1406
|
Lauricella functions are generalizations of the Gauss hypergeometric functions to multiple variables. Four such generalizations were investigated by Lauricella (1893), and more fully by Appell and Kampé de Fériet (1926, p. 117). Let be the number of variables, then the Lauricella functions are defined by
If , then these functions reduce to the Appell hypergeometric functions , , , and , respectively. If , all four become the Gauss hypergeometric function (Exton 1978, p. 29).
REFERENCES:
Appell, P. and Kampé de Fériet, J. Fonctions hypergéométriques et hypersphériques: polynomes d'Hermite. Paris: Gauthier-Villars, 1926.
Erdélyi, A. "Hypergeometric Functions of Two Variables." Acta Math. 83, 131-164, 1950.
Exton, H. Ch. 5 in Multiple Hypergeometric Functions and Applications. New York: Wiley, 1976.
Exton, H. "The Lauricella Functions and Their Confluent Forms," "Convergence," and "Systems of Partial Differential Equations." §1.4.1-1.4.3 in Handbook of Hypergeometric Integrals: Theory, Applications, Tables, Computer Programs. Chichester, England: Ellis Horwood, pp. 29-31, 1978.
Lauricella, G. "Sulla funzioni ipergeometriche a più variabili." Rend. Circ. Math. Palermo 7, 111-158, 1893.
Srivastava, H. M. and Karlsson, P. W. Multiple Gaussian Hypergeometric Series. Chichester, England: Ellis Horwood, 1985.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|