Read More
Date: 17-2-2019
![]()
Date: 19-1-2019
![]()
Date: 17-1-2019
![]() |
If , ...,
are irreducible polynomials with integer coefficients such that no integer
divides
, ...,
for all integers
, then there should exist infinitely many
such that
, ...,
are simultaneously prime.
If Schinzel's hypothesis is true, then it follows that all positive integers can be represented in the form
with
and
prime. In addition, it would follow that there are an infinite number of numbers
such that
, where
is the number of divisors of
and
is the sum of divisors, since the conjecture implies that there are infinitely many primes
for which
is prime, for such
,
and
, so
is in the sequence (D. Hickerson, pers. comm., Jan. 24, 2006).
Conroy (2001) verified the conjecture to .
REFERENCES:
Conroy, M. M. "A Sequence Related to a Conjecture of Schinzel." J. Integer Sequences 4, No. 01.1.7, 2001. http://www.cs.uwaterloo.ca/journals/JIS/VOL4/CONROY/conroy.html.
Dickson, L. E. "A New Extension of Dirichlet's Theorem on Prime Numbers." Messenger Math. 33, 155-161, 1904.
Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, 1996.
Schinzel, A. and Sierpiński, W. "Sur certaines hypothèses concernant les nombres premiers. Remarque." Acta Arithm. 4, 185-208, 1958.
Schinzel, A. and Sierpiński, W. Erratum to "Sur certains hypothèses concernant les nombres premiers." Acta Arith. 5, 259, 1959.
|
|
4 أسباب تجعلك تضيف الزنجبيل إلى طعامك.. تعرف عليها
|
|
|
|
|
أكبر محطة للطاقة الكهرومائية في بريطانيا تستعد للانطلاق
|
|
|
|
|
مشاتل الكفيل تزيّن مجمّع أبي الفضل العبّاس (عليه السلام) بالورد استعدادًا لحفل التخرج المركزي
|
|
|