المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

مـفهوم التسويـق الداخـلي
19-2-2019
صيغة عقد القضاء (أمر التعيين) في الفقة الاسلامي
23-6-2016
حقيقة الهداية والهدى
8-11-2014
التفهيم والإرشاد
22-5-2022
بناء النفس لدى قادة الدين ورجال الدولة
2023-03-29
أثر التسويق الإلكتروني على التسعيرPricing.
6-9-2016

Kelvin Transformation  
  
550   02:01 مساءً   date: 27-12-2018
Author : Itô, K. (Ed.).
Book or Source : "Harmonic Functions and Subharmonic Functions: Invariance of Harmonicity." §193B in Encyclopedic Dictionary of Mathematics, 2nd ed. Cambridge
Page and Part : p. 725


Read More
Date: 21-5-2018 1127
Date: 11-6-2018 592
Date: 13-6-2018 576

Kelvin Transformation

Let D be a domain in R^n for n>=3. Then the transformation

onto a domain , where

is called a Kelvin transformation. If u(x_1,...,x_n) is a harmonic function on D, then  is also harmonic on .


REFERENCES:

Itô, K. (Ed.). "Harmonic Functions and Subharmonic Functions: Invariance of Harmonicity." §193B in Encyclopedic Dictionary of Mathematics, 2nd ed. Cambridge, MA: MIT Press, p. 725, 1980.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.