Read More
Date: 26-12-2018
![]()
Date: 18-10-2018
![]()
Date: 18-10-2018
![]() |
Let be an entire function of finite order
and
the zeros of
, listed with multiplicity, then the rank
of
is defined as the least positive integer such that
![]() |
(1) |
Then the canonical Weierstrass product is given by
![]() |
(2) |
and has degree
. The genus
of
is then defined as
, and the Hadamard factorization theory states that an entire function of finite order
is also of finite genus
, and
![]() |
(3) |
REFERENCES:
Krantz, S. G. "The Hadamard Factorization Theorem." §9.3.5 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 121-122, 1999.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|