المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
عمليات الخدمة اللازمة للجزر
2024-11-24
العوامل الجوية المناسبة لزراعة الجزر
2024-11-24
الجزر Carrot (من الزراعة الى الحصاد)
2024-11-24
المناخ في مناطق أخرى
2024-11-24
أثر التبدل المناخي على الزراعة Climatic Effects on Agriculture
2024-11-24
نماذج التبدل المناخي Climatic Change Models
2024-11-24



الخوارزميـــات القـــــــابلة للتوســـع فــــي الأمثليـــــــــة غير المقيدة ذات القيــــــاس العالي  
  
323   02:50 مساءً   التاريخ: 8-8-2017
المؤلف : عمـــر بهـــاء الديـــن محمــد
الكتاب أو المصدر : الخوارزميـــات القـــــــابلة للتوســـع فــــي الأمثليـــــــــة غير المقيدة...
الجزء والصفحة : ...
القسم : الرياضيات / بحوث و اطاريح جامعية /

العنوان: الخوارزميـــات القـــــــابلة للتوســـع

فــــي الأمثليـــــــــة غير المقيدة

ذات القيــــــاس العالي

 

 اسم الباحث:  عمـــر بهـــاء الديـــن محمــد

  الجامعه والكليه:  كلية علوم الحاسبات والرياضيات في جامعة الموصل

الخلاصه :

تتناول هذه الرسالة طريقة جديدة في حل المسائل ذات القياس العالي في الامثلية غير المقيدة بالاعتماد على طريقة  BFGS.

في طريقة BFGS تم استخدام الذاكرة المحدودة، حيث قمنا بضرب مصفوفة (BFGS) بمتجه ليكون حاصل الضرب بشكل متجهات بدلا من أن يكون بشكل مصفوفات، ويتم خزن متجهين فقط، وذلك من خلال تطوير الخوارزمية المعطاة من قبل   Nocedal J. (1999).

إن الغاية من هذا هو أن يصبح بإمكاننا حل المسائل ذات الأبعاد الكبيرة، حيث أن من الواضح للجميع أن الحاسبة بإمكانها خزن الملايين من المتجهات في حين أن إمكانيتها على خزن المصفوفات يكون محدودا.

تم تطبيق الطريقة المقدمة في هذا البحث على إحدى عشرة دالة لاخطية معروفة في هذا المجال لغرض تقييم كفاءة الطريقة من ناحية عدد التكرارات NOI ، عدد مرات حسابات الدالة NOF  وقيمة الدالة Function Value  ومقارنتها بالطريقة التقليدية إلى طريقة  BFGS.

تم تطبيق الطريقة على دوال ذات متغيرات لغاية 1000000 متغير واكثر.

من مقارنة النتائج تبين أن الخوارزمية الجديدة على العموم كانت الأفضل.

A new method for solving Large-Scale problems in the unconstrained optimization has been proposed in this thesis depending on the BFGS method.

The limited memory is used in the BFGS method by multiplying the BFGS matrix by a vector to obtain vectors instead of matrices and only two vectors can be stored, by modifying the algorithm given by Nocedal J (1999).

The purpose of this algorithm is to enable us for solving the Large- Scale Problems, as it is obvious to everyone that the computer can store millions of vectors, whereas its ability in storing matrices is limited.

The present method in this research is applied on eleven nonlinear functions in order to evaluate the method efficiency in the numbers of iterations (NOI), number of functions (NOF) and function value and comparing it with the standard BFGS method.

This method has been applied on functions with variables till 1000000 and more than that.

From comparing the results, we fined that this algorithm
was the best.

 

 

 

ملاحظه: للحصول على الملف كاملا يمكنكم مراسلتنا عل البريد الالكتروني 

(almerjamathematics@gmail.com)




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.