

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
An Implementation ofMathematical Models for Arabic Speech Recognition
المؤلف:
فاتن بشير عبد الأحد صوفيا
المصدر:
An Implementation ofMathematical Models for Arabic Speech Recognition
الجزء والصفحة:
...
5-8-2017
723
العنوان:
An Implementation ofMathematical Models
for Arabic Speech Recognition
for Arabic Speech Recognition
اسم الباحث: فاتن بشير عبد الأحد صوفيا
الجامعه والكليه: كلية علوم الحاسبات والرياضيات في جامعة الموصل
الخلاصه :
تعتبر اللغة العربية واحدة من بين اللغات الواسعة الانتشار في العالم في الوقت الحالي, لكن هنالك أعداد قليلة من البحوث التي تهتم بتمييز الكلمات العربية مقارنة باللغات الأخرى. إضافة إلى ذلك, فان معظم البحوث السابقة كانت تتجه نحو تمييز كلمات منفصلة للغة العربية, لذا فان هذا العمل يهتم بتصميم وتطبيق نظام مميز اللغة العربية.
لقد تم اقتراح وتنفيذ خوارزمية تقطيع جديدة بالاعتماد على خصائص المنطلق الزمني (time domain )لإشارة الكلام و قواعد علم الفونولوجي للغة العربية.
يتألف النظام من اتجاهين : الأول مميز لمقاطع الكلمات في اللغة العربية, وهي (CV, CVC, CVV, CVVC, CVCC)، والثاني مميز للكلمات المنفصلة في اللغة العربية. كلا الاتجاهين يتألفان من أربع وحدات أساسية : تقسيم الكلمات العربية, استخلاص الخواص, تعليم النموذج (training model) وأخيرا تمييز النموذج
(recognition model). حيث أن تعليم النموذج وتمييز النموذج يتم من خلال نموذج ماركوف المخفي (hidden Markove model) والشبكات العصبية ذات الانتشار العكسي (back propagation neural network).
استخلاص الخواص تم إيجاده من خلال استخدام بعض النماذج السمعية التي تحاكي نظام السمع عند الإنسان, بمعنى آخر تم استخدام معاملات درجة النغم
(mel- frequency cepstral coefficient), كذلك تم إيجاد المشتقة الأولى والثانية والطاقة الصوتية كصفات إضافية.
أظهرت النتائج النهائية أن استخدام نموذج ماركوف المخفي لتمييز مقاطع الكلمات أعطى نتائج جيدة تراوحت بين (83-92)% وهي أفضل من النتائج التي حصلنا عليها من استخدام شبكة الانتشار العكسي التي تراوحت بين (71-76)% . أما في تمييز الكلمات المنفصلة, فلقد كانت النتائج عكسية, حيث أظهرت نتائج شبكة الانتشار العكسي نسبة نجاح تراوحت بين (85-94)% بينما كانت نسبة النجاح في استخدام نموذج ماركوف المخفي (71-80)% .
Arabic is currently considered one of the most widely spoken languages in the world. There has been relatively small number of speech recognition researches on Arabic compared to other languages. Moreover, most previous work has concentrated on the recognition of discrete words. So this work is to design and implemented a system of Arabic recognition.
We use the representation of time domain and Arabic phonological system to get a new segmentation algorithm.
The system consists of two directions. First, Arabic syllabic recognition, which are (CV, CVV, CVC, CVVC, CVCC), and second, is the Arabic discrete word recognition. The two directions consist of four main stages. The major system models are Arabic segmentation algorithm, feature extraction, learning model and recognition model, where learning and recognition models referred to as hidden Markov model and back propagation neural network.
Feature extraction founds through the used of some auditory models that simulate the human auditory system, that is mean we use mel frequency cepstral coefficient with first and second derivative and energy.
The results show that the use of hidden Markov model on syllabic recognition given the best result (83-92)% than the use of back propagation neural network which is (71-76)%. Also we show that the result of usage of back propagation neural network in discrete word recognition gives good result (85-94)% , while in hidden Markov model the result is (71-80)%.
ملاحظه: للحصول على الملف كاملا يمكنكم مراسلتنا عل البريد الالكتروني
(almerjamathematics@gmail.com)
الاكثر قراءة في بحوث و اطاريح جامعية
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)