المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الكيمياء
عدد المواضيع في هذا القسم 11123 موضوعاً
علم الكيمياء
الكيمياء التحليلية
الكيمياء الحياتية
الكيمياء العضوية
الكيمياء الفيزيائية
الكيمياء اللاعضوية
مواضيع اخرى في الكيمياء
الكيمياء الصناعية

Untitled Document
أبحث عن شيء أخر
تربية الماشية في روسيا الفيدرالية
2024-11-06
تربية ماشية اللبن في البلاد الأفريقية
2024-11-06
تربية الماشية في جمهورية مصر العربية
2024-11-06
The structure of the tone-unit
2024-11-06
IIntonation The tone-unit
2024-11-06
Tones on other words
2024-11-06

زكاة الذهب والفضة
29-1-2020
نبات المارنتا
2024-07-14
سهّل التحكم في أية مهمة كبرى
2023-03-01
اثر أخلاقيات المنظمة
24-4-2016
اثر اختلاف الدين في حق الورثة في ضوء الشريعتين اليهودية والمسيحية
2-2-2016
أهمية معرفة مناطق الانكسارية والالتواءات
24/11/2022

The SN1 Mechanism  
  
1944   02:47 صباحاً   date: 20-12-2015
Author :
Book or Source :
Page and Part :


Read More
Date: 29-7-2018 2393
Date: 22-10-2020 1105
Date: 14-12-2020 1572

The SN1 Mechanism

Reaction 7, shown at the end of the previous section, is clearly different from the other cases we have examined. It not only shows first order kinetics, but the chiral 3º-alkyl bromide reactant undergoes substitution by the modest nucleophile water with extensive racemization. In all of these features this reaction fails to meet the characteristics of the SN2 mechanism. A similar example is found in the hydrolysis of tert-butyl chloride, shown below. Note that the initial substitution product in this reaction is actually a hydronium ion, which rapidly transfers a proton to the chloride anion. This second acid-base proton transfer is often omitted in writing the overall equation, as in the case of reaction 7 above.

(CH3)3C-Cl   +   H2O   ——>  (CH3)3C-OH2(+)   +   Cl(–)   ——>  (CH3)3C-OH   +   HCl

Although the hydrolysis of tert-butyl chloride, as shown above, might be interpreted as an SN2 reaction in which the high and constant concentration of solvent water does not show up in the rate equation, there is good evidence this is not the case. First, the equivalent hydrolysis of ethyl bromide is over a thousand times slower, whereas authentic SN2 reactions clearly show a large rate increase for 1º-alkyl halides. Second, a modest increase of hydroxide anion concentration has no effect on the rate of hydrolysis of tert-butyl chloride, despite the much greater nucleophilicity of hydroxide anion compared with water.
The first order kinetics of these reactions suggests a two-step mechanism in which the rate-determining step consists of the ionization of the alkyl halide, as shown in the diagram on the right. In this mechanism, a carbocation is formed as a high-energy intermediate, and this species bonds immediately to nearby nucleophiles. If the nucleophile is a neutral molecule, the initial product is an "onium" cation, as drawn above for t-butyl chloride, and presumed in the energy diagram. In evaluating this mechanism, we may infer several outcomes from its function.

 

 

 

 

 


   First, the only reactant that is undergoing change in the first (rate-determining) step is the alkyl halide, so we expect such reactions would be unimolecular and follow a first-order rate equation. Hence the name SN1 is applied to this mechanism. 
     Second, since nucleophiles only participate in the fast second step, their relative molar concentrations rather than their nucleophilicities should be the primary product-determining factor. If a nucleophilic solvent such as water is used, its high concentration will assure that alcohols are the major product. Recombination of the halide anion with the carbocation intermediate simply reforms the starting compound. Note that SN1 reactions in which the nucleophile is also the solvent are commonly called solvolysis reactions. The hydrolysis of t-butyl chloride is an example.
                Third, the Hammond postulate suggests that the activation energy of the rate-determining first step will be inversely proportional to the stability of the carbocation intermediate. The stability of carbocations was discussed earlier, and a qualitative relationship is given below.

 

Carbocation 
Stability
CH3(+) < CH3CH2(+) < (CH3)2CH(+) CH2=CH-CH2(+) < C6H5CH2(+) (CH3)3C(+)

Consequently, we expect that 3º-alkyl halides will be more reactive than their 2º and 1º-counterparts in reactions that follow an SN1 mechanism. This is opposite to the reactivity order observed for the SN2 mechanism. Allylic and benzylic halides are exceptionally reactive by either mechanism.
                Fourth, in order to facilitate the charge separation of an ionization reaction, as required by the first step, a good ionizing solvent will be needed. Two solvent characteristics will be particularly important in this respect. The first is the ability of solvent molecules to orient themselves between ions so as to attenuate the electrostatic force one ion exerts on the other. This characteristic is related to the dielectric constant, ε, of the solvent. Solvents having high dielectric constants, such as water (ε=81), formic acid (ε=58), dimethyl sulfoxide (ε=45) & acetonitrile (ε=39) are generally considered better ionizing solvents than are some common organic solvents such as ethanol (ε=25), acetone (ε=21), methylene chloride (ε=9) & ether (ε=4). The second factor is solvation, which refers to the solvent's ability to stabilize ions by encasing them in a sheath of weakly bonded solvent molecules. Anions are solvated by hydrogen-bonding solvents, as noted earlier. Cations are often best solvated by nucleophilic sites on a solvent molecule (e.g. oxygen & nitrogen atoms), but in the case of carbocations these nucleophiles may form strong covalent bonds to carbon, thus converting the intermediate to a substitution product. This is what happens in the hydrolysis reactions described above. 
                Fifth, the stereospecificity of these reactions may vary. The positively-charged carbon atom of a carbocation has a trigonal (flat) configuration (it prefers to be sp2 hybridized), and can bond to a nucleophile equally well from either face. If the intermediate from a chiral alkyl halide survives long enough to encounter a random environment, the products are expected to be racemic (a 50:50 mixture of enantiomers). On the other hand, if the departing halide anion temporarily blocks the front side, or if a nucleophile is oriented selectively at one or the other face, then the substitution might occur with predominant inversion or even retention of configuration

 

Reference

http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/alhalrx2.htm#hal5

 




هي أحد فروع علم الكيمياء. ويدرس بنية وخواص وتفاعلات المركبات والمواد العضوية، أي المواد التي تحتوي على عناصر الكربون والهيدروجين والاوكسجين والنتروجين واحيانا الكبريت (كل ما يحتويه تركيب جسم الكائن الحي مثلا البروتين يحوي تلك العناصر). وكذلك دراسة البنية تتضمن استخدام المطيافية (مثل رنين مغناطيسي نووي) ومطيافية الكتلة والطرق الفيزيائية والكيميائية الأخرى لتحديد التركيب الكيميائي والصيغة الكيميائية للمركبات العضوية. إلى عناصر أخرى و تشمل:- كيمياء عضوية فلزية و كيمياء عضوية لا فلزية.


إن هذا العلم متشعب و متفرع و له علاقة بعلوم أخرى كثيرة ويعرف بكيمياء الكائنات الحية على اختلاف أنواعها عن طريق دراسة المكونات الخلوية لهذه الكائنات من حيث التراكيب الكيميائية لهذه المكونات ومناطق تواجدها ووظائفها الحيوية فضلا عن دراسة التفاعلات الحيوية المختلفة التي تحدث داخل هذه الخلايا الحية من حيث البناء والتخليق، أو من حيث الهدم وإنتاج الطاقة .


علم يقوم على دراسة خواص وبناء مختلف المواد والجسيمات التي تتكون منها هذه المواد وذلك تبعا لتركيبها وبنائها الكيميائيين وللظروف التي توجد فيها وعلى دراسة التفاعلات الكيميائية والاشكال الأخرى من التأثير المتبادل بين المواد تبعا لتركيبها الكيميائي وبنائها ، وللظروف الفيزيائية التي تحدث فيها هذه التفاعلات. يعود نشوء الكيمياء الفيزيائية إلى منتصف القرن الثامن عشر . فقد أدت المعلومات التي تجمعت حتى تلك الفترة في فرعي الفيزياء والكيمياء إلى فصل الكيمياء الفيزيائية كمادة علمية مستقلة ، كما ساعدت على تطورها فيما بعد .