المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05
مـعاييـر تحـسيـن الإنـتاجـيـة
2024-11-05
نـسـب الإنـتاجـيـة والغـرض مـنها
2024-11-05
المـقيـاس الكـلـي للإنتاجـيـة
2024-11-05
الإدارة بـمؤشـرات الإنـتاجـيـة (مـبادئ الإنـتـاجـيـة)
2024-11-05
زكاة الفطرة
2024-11-05

موقف القضاء من أثر الاندماج بين الشركات على عقد العمل
25-7-2022
سيرولوجي الفيروسات النباتية Serology of plant viruses
20-6-2018
Lalla
21-10-2015
انفصال القمر
2023-05-30
Industrial Preparation and Use of Alkenes
10-7-2016
إبراهيم بن محمد الكلابزي
9-04-2015

Shoots  
  
2838   12:25 صباحاً   date: 30-10-2015
Author : Atlas of Plant Anatomy
Book or Source : http://atlasveg.ib.usp.br/English
Page and Part :


Read More
Date: 9-11-2016 6339
Date: 8-11-2016 3608
Date: 30-10-2016 1974

Shoots

The shoot is the production center for a plant. It is the organ system that gives rise to stems, leaves, and flowers. Therefore, the shoot system is func­tionally responsible for food production (photosynthesis) and reproduction. Shoots can be classified as vegetative or floral. Vegetative shoots are de­scribed in this article.

Anatomy

Vegetative shoots consist of stems and leaves. The stem is the major struc­tural support for the plant, but also contains vascular tissues that transport water, minerals, and food throughout the plant. Examining the organiza­tion of plant tissues within a stem highlights these functional characteris­tics. The outer regions of the stem are covered with dermal tissue made up of epidermal cells. These cells protect the stem and help to prevent water loss. Internal to the epidermis lies the ground tissue and vascular bundles. The organization of these tissue types within a stem varies with the type of plant. For example, monocotyledons have vascular bundles of xylem and phloem scattered throughout the diameter of the stem with ground tissue surrounding them. In contrast, dicotyledons have vascular bundles that are arranged in a ring surrounded by ground tissue. The ground tissue that lies to the exterior of the vascular bundle ring is called cortex, and the ground tissue that lies interior to the vascular bundles is called pith.

Vascular Functions

Regardless of the organization within the stem, the function of the vascu­lar components is essentially the same in all higher plants. The xylem trans­ports the water and minerals absorbed by the root up through the stems to the leaves and flowers. On the other hand, the phloem transports the sug­ars and other nutrients, made by the leaves throughout the plant, to the root for immediate use or for storage during periods of dormancy and to flowers for growth or fruit production. The ground tissue, which constitutes the bulk of the stem, is mainly composed of parenchyma cells that produce car­bohydrates (via photosynthesis) and store nutrients. However, the ground tissue also contains collenchyma and sclerenchyma cells that provide sup­port with their rigid cell walls.

­ Young shoots of fiddlehead ferns.

Branching

On a larger anatomical scale, stems contain nodes, where leaves are attached, and internodes, the stem segments between nodes. There is usually a main shoot and side shoots, called branches. The side shoots grow from axillary buds that form at the nodes. In a young plant, most of the growth in the shoot system occurs in the main shoot and the developing leaves. During this stage, the growth is concentrated in the terminal bud at the shoot tip. The plant invests its energy into growing taller in order to maximize the plant’s exposure to light. In fact, certain cells in the shoot tip produce a hor­mone, called auxin, that is transported down the shoot and functions to in­hibit the growth of axillary buds. As the plant ages, the stimulatory effects of a group of hormones called cytokinins overcome the inhibitory control of auxin and the axillary buds begin to develop into lateral branches. This results in a bushier plant that allows for more leaf growth and greater ex­posure to the plant’s environment. These hormonal effects are often taken advantage of in agriculture and gardening to manipulate the shape of a plant. Removing the shoot tip (“cutting back”) will remove the source of auxin and will stimulate the growth of axillary buds, and make the plant thicker and bushier.

Modified Shoots

Some plants have modified stems that serve a variety of different functions. Strawberries have modified stems called stolons that grow on the surface of the ground and allow the plant to spread and occupy a large section of nutrient-rich soil. Tubers, such as the modified stems of white potatoes, are specialized for food storage. Bulbs are also modified stems that are special­ized for storage, and rhizomes are stems that grow laterally underground and are often mistaken for roots.

Leaves

Leaves are the major sites of photosynthesis in most plants. They are joined to the stem via a petiole and extend from the stem at nodes. While leaves of different plants vary greatly in size and shape, they have several similar cellular features that optimize photosynthesis. Like stems, leaves are cov­ered with epidermal cells that protect the leaf from excessive water loss. Leaves, however, have specialized epidermal cells called guard cells, which surround pores called stomata. Stomata facilitate the exchange of gases in the leaf. CO2 diffuses into the leaf through the stomata for use in photo­synthesis, and O2, the waste product of photosynthesis, diffuses out of the leaf through stomata. The vascular tissue within a leaf is organized into veins. The remaining tissue in the leaf is ground tissue. This ground tissue is composed mostly of parenchyma cells that have numerous chloroplasts in which photosynthesis takes place.

References

Atlas of Plant Anatomy. http://atlasveg.ib.usp.br/English/.

Moore, Randy, W. Dennis Clark, and Kingley R. Stern. Botany. Boston: William C.

Brown Publishers, 1995




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.