المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تربية ماشية اللبن في البلاد الأفريقية
2024-11-06
تربية الماشية في جمهورية مصر العربية
2024-11-06
The structure of the tone-unit
2024-11-06
IIntonation The tone-unit
2024-11-06
Tones on other words
2024-11-06
Level _yes_ no
2024-11-06

Syllabic consonants
2024-03-13
المفاضلة بين الصيانة الوقائية والصيانة العلاجية وامثلة تطبيقية 1
13-4-2021
Fractional Ideal
17-10-2019
الإسلام دين التواصل
2024-08-28
Michael Francis Atiyah
25-2-2018
Covalent Network Solids
6-5-2020

Abu,l Abbas al-Fadl ibn Hatim Al-Nayrizi  
  
1067   01:31 صباحاً   date: 21-10-2015
Author : A I Sabra
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 16-10-2015 2773
Date: 21-10-2015 1079
Date: 21-10-2015 1005

Born: about 865 in possibly Nayriz, Iran
Died: about 922 in possibly Baghdad, Iraq

 

Al-Nayrizi was probably born in Nayriz which was a small town southeast of Shiraz now in central Iran. Certainly he must have been associated with this town in his youth to have been called al-Nayrizi. Little is known of his life but we do know that he dedicated some of his works to al-Mu'tadid so he almost certainly moved to Baghdad and worked there for the caliph.

The period during which al-Nayrizi was growing up was a turbulent one in the region in which he lived. Following the assassination of the caliph al-Mutawwakil in 861 there was a period of anarchy and civil war. The Caliph al-Mu'tamid and his brother al-Muwaffaq who was a military leader, reunited the empire from 870 but a rebellion was eventually put down in 883 only after many years of military campaigns by al-Muwaffaq and his brother al-Mu'tadid. Al-Mu'tamid died in 892 and, since al-Mu'tadid had forced him to disinherit his own son, al-Mu'tadid became caliph in that year.

Al-Mu'tadid reorganised the administration and reformed finances, and he demonstrated great skill and ruthlessness in dealing with the many factions that had arisen. There followed a period of great cultural activity, with Baghdad home to many intellectuals. Al-Nayrizi must have worked for al-Mu'tadid during his ten year of rule, for he wrote works for the caliph on meteorological phenomena and on instruments to measure the distance to objects. If al-Mu'tadid's reign had begun with political intrigue then it seemed to end in the same way, the general opinion being that, in 902, al-Mu'tadid was poisoned by his political enemies. Al-Mu'tadid's son al-Muktafi became caliph in 902 and ruled until 908. It seems likely that al-Nayrizi would continue to work in Baghdad for the new caliph since the same support for intellectuals in Baghdad continued.

The Fihrist (Index) was a work compiled by the bookseller Ibn an-Nadim in 988. It gives a full account of the Arabic literature which was available in the 10th century and in particular mentions al-Nayrizi as a distinguished astronomer. Eight works by al-Nayrizi are listed in the Fihrist. A later work, written in the 13thcentury, described al-Nayrizi as both a distinguished astronomer and as a leading expert in geometry.

Al-Nayrizi's works on astronomy include a commentary of Ptolemy's Almagest and Tetrabiblos. Neither have survived. He is most famous for his commentary on Euclid's Elements which has survived. The Leiden manuscript referred to in the title of [3] contains the revision by al-Nayrizi of the second Arabic translation of Euclid's Elements by al-Hajjaj. The translation by al-Hajjaj has not survived and the article [3] examines to what extent al-Nayrizi changed the translation, arguing that indeed he made considerable changes. The paper [4] looks at different manuscripts containing versions of al-Nayrizi's commentary, some in Arabic, one a Latin version.

In dealing with ratio and proportion in his commentary on the Elements, al-Nayrizi adopts concepts proposed by al-Mahani who had worked in Baghdad, probably before al-Nayrizi arrived there. Al-Nayrizi wrote a work on how to calculate the direction of the sacred shrine of the Ka'bah in Mecca (to was important for Muslims to be able to do this since they had to face that direction five times each day when performing the daily prayer). In this work he effectively uses the tan function, but he was not the first to use these trigonometrical ideas.

The article [2] is a translation into Russian of the short treatise by al-Nayrizi on Euclid's fifth postulate. In his work on proofs of the parallel postulate, al-Nayrizi quotes work by a mathematician named Aghanis. In [1] Sabra argues convincingly that Aghanis is the Athenian philosopher Agapius who was a pupil of Proclus and Marinus and taught around 511 AD.


 

  1. A I Sabra, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830903126.html

Articles:

  1. A Abdurakhmanov and B A Rozenfel'd (trs.), The treatise of al-Fadl ibn Hatim an-Nayrizi on the proof of a well-known postulate of Euclid (Russian), Istor.-Mat. Issled. No. 26 (1982), 325-329.
  2. S Brentjes, Der Tabit b. Qurra zugeschriebene Zusatz I, 46غ zu Euklid I, 46 in MS Leiden 399, 1, in Amphora (Basel, 1992), 91-120.
  3. H L L Busard, Einiges über die Handschrift Leiden 399, 1 und die arabisch-lateinische übersetzung von Gerhard von Cremona, in History of mathematics (San Diego, CA, 1996), 173-205.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.