Read More
Date: 11-5-2022
![]()
Date: 26-3-2022
![]()
Date: 15-5-2022
![]() |
"The" graph is the path graph on two vertices:
.
An -graph
for
and
is a generalization of a generalized Petersen graph and has vertex set
and edge set
where the subscripts are read modulo (Bouwer et al. 1988, Žitnik et al. ). Such graphs can be constructed by graph expansion on
.
If the restriction is relaxed to allow
and
to equal
,
gives the ladder rung graph
and
gives the sunlet graph
.
Two -graphs
and
are isomorphic iff there exists an integer
relatively prime to
such that either
or
(Boben et al. 2005, Horvat et al. 2012, Žitnik 2012).
The graph is connected iff
. If
, then the graph
consists of
copies of
(Žitnik et al. 2012).
The -graph
corresponds to
copies of the graph
The following table summarizes special named -graphs and classes of named
-graphs.
graph | |
cubical graph |
|
Petersen graph |
|
Dürer graph | |
Möbius-Kantor graph | |
dodecahedral graph | |
Desargues graph | |
Nauru graph | |
prism graph |
|
generalized Petersen graph |
All -graphs with
have a non-vertex degenerate unit-distance representation in the plane, and with the exception of the families
and
, the representations can be constructed with
-fold rotational symmetry (Žitnik et al. 2012). While some of these may be vertex-edge degenerate (i.e., an edge passes over a vertex to which it is not incident), computer searching has found only four distinct such cases (
,
,
, and
), and in each case, a different indexing of the I graph gives a unit-distance embedding that is not degenerate in this way (Žitnik et al. 2012).
Alspach, B. "The Classification of Hamiltonian Generalized Petersen Graphs." J. Combin. Th. B 34, 293-312, 1983.
Boben, M.; Pisanski, T.; and Žitnik, A. "I-Graphs and the Corresponding Configurations." J. Combin. Des. 13, 406-424, 2005.
Bouwer, I. Z.; Chernoff, W. W.; Monson, B.; and Star, Z. The Foster Census. Charles Babbage Research Centre, 1988.Frucht, R.; Graver, J. E.; and Watkins, M. E. "The Groups of the Generalized Petersen Graphs." Proc. Cambridge Philos. Soc. 70, 211-218, 1971.
Horvat, B.; Pisanski, T.; and Žitnik, A. "Isomorphism Checking of -Graphs." Graphs Combin. 28, 823-830, 2012.
Lovrečič Saražin, M. "A Note on the Generalized Petersen Graphs That Are Also Cayley Graphs." J. Combin. Th. B 69, 226-229, 1997.
Nedela, R. and Škoviera, M. "Which Generalized Petersen Graphs Are Cayley Graphs?" J. Graph Th. 19, 1-11, 1995.
Petkovšek, M. and Zakrajšek, H. "Enumeration of -Graphs: Burnside Does It Again." To appear in Ars Math. Contemp. 3, 2010.
Steimle, A. and Staton, W. "The Isomorphism Classes of the Generalized Petersen Graphs." Disc. Math. 309, 231-237, 2009.
Žitnik, A.; Horvat, B.; and Pisanski, T. "All Generalized Petersen Graphs are Unit-Distances Graphs." J. Korean Math. Soc. 49, 475-491, 2012.
|
|
لخفض ضغط الدم.. دراسة تحدد "تمارين مهمة"
|
|
|
|
|
طال انتظارها.. ميزة جديدة من "واتساب" تعزز الخصوصية
|
|
|
|
|
عوائل الشهداء: العتبة العباسية المقدسة سبّاقة في استذكار شهداء العراق عبر فعالياتها وأنشطتها المختلفة
|
|
|