المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

اختصام الغير و التدخل الاختياري
30-4-2022
شبكات التواصل الاجتماعي: سلطة ضد سوء استخدام السلطة
12-8-2022
تحويل البحث إلى مقالة منتهية
26-10-2019
هل استعمل الإنسان الحشرات في مكافحة الأدغال؟
11-4-2021
Gregory Number
9-10-2019
المصائب الموقظة
27-08-2015

Hoffman-Singleton Theorem  
  
1699   07:07 مساءً   date: 18-3-2022
Author : Bannai, E. and Ito, T
Book or Source : "On Moore Graphs." J. Fac. Sci. Univ. Tokyo Ser. A 20
Page and Part : ...


Read More
Date: 3-8-2016 2101
Date: 10-5-2022 1916
Date: 27-3-2022 1557

Hoffman-Singleton Theorem

 

Let G be a k-regular graph with girth 5 and graph diameter 2. (Such a graph is a Moore graph). Then, k=2, 3, 7, or 57. A proof of this theorem is difficult (Hoffman and Singleton 1960, Feit and Higman 1964, Damerell 1973, Bannai and Ito 1973), but can be found in Biggs (1993).

The first three are the cycle graph C_5 (k=2), Petersen graph (k=3), and Hoffman-Singleton graph (k=7). The existence of the last is an unsolved problem.


REFERENCES

Bannai, E. and Ito, T. "On Moore Graphs." J. Fac. Sci. Univ. Tokyo Ser. A 20, 191-208, 1973.

Biggs, N. L. Ch. 23 in Algebraic Graph Theory, 2nd ed. Cambridge, England: Cambridge University Press, 1993.Damerell, R. M. "On Moore Graphs." Proc. Cambridge Philos. Soc. 74, 227-236, 1973.

Feit, W. and Higman, G. "The Non-Existence of Certain Generalized Polygons." J. Algebra 1, 114-131, 1964.

Hoffman, A. J. and Singleton, R. R. "On Moore Graphs of Diameter Two and Three." IBM J. Res. Develop. 4, 497-504, 1960.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.