 
					
					
						Nowhere Dense					
				 
				
					
						 المؤلف:  
						Ferreirós, J.
						 المؤلف:  
						Ferreirós, J.					
					
						 المصدر:  
						"Lipschitz and Hankel on Nowhere Dense Sets and Integration." §5.2 in Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics.
						 المصدر:  
						"Lipschitz and Hankel on Nowhere Dense Sets and Integration." §5.2 in Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 12-1-2022
						12-1-2022
					
					
						 1695
						1695					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Nowhere Dense
A set  is said to be nowhere dense if the interior of the set closure of
 is said to be nowhere dense if the interior of the set closure of  is the empty set. For example, the Cantor set is nowhere dense.
 is the empty set. For example, the Cantor set is nowhere dense.
There exist nowhere dense sets of positive measure. For example, enumerating the rationals in ![[0,1]](https://mathworld.wolfram.com/images/equations/NowhereDense/Inline3.svg) as
 as ![<span style=]() {q_n}" src="https://mathworld.wolfram.com/images/equations/NowhereDense/Inline4.svg" style="height:22px; width:30px" /> and choosing an open interval
{q_n}" src="https://mathworld.wolfram.com/images/equations/NowhereDense/Inline4.svg" style="height:22px; width:30px" /> and choosing an open interval  of length
 of length  containing
 containing  for each
 for each  , then the union of these intervals has measure at most 1/2. Hence, the set of points in
, then the union of these intervals has measure at most 1/2. Hence, the set of points in ![[0,1]](https://mathworld.wolfram.com/images/equations/NowhereDense/Inline9.svg) but not in any of
 but not in any of ![<span style=]() {I_n}" src="https://mathworld.wolfram.com/images/equations/NowhereDense/Inline10.svg" style="height:22px; width:27px" /> has measure at least 1/2, despite being nowhere dense.
{I_n}" src="https://mathworld.wolfram.com/images/equations/NowhereDense/Inline10.svg" style="height:22px; width:27px" /> has measure at least 1/2, despite being nowhere dense.
REFERENCES
Ferreirós, J. "Lipschitz and Hankel on Nowhere Dense Sets and Integration." §5.2 in Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics.
 Basel, Switzerland: Birkhäuser, pp. 154-156, 1999.Rudin, W. Functional Analysis, 2nd ed. New York: McGraw-Hill, p. 42, 1991.
				
				
					
					 الاكثر قراءة في  نظرية المجموعات
					 الاكثر قراءة في  نظرية المجموعات					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة