 
					
					
						Subset					
				 
				
					
						 المؤلف:  
						Sloane, N. J. A
						 المؤلف:  
						Sloane, N. J. A					
					
						 المصدر:  
						Sequence A000079/M1129 in "The On-Line Encyclopedia of Integer Sequences."
						 المصدر:  
						Sequence A000079/M1129 in "The On-Line Encyclopedia of Integer Sequences."					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 17-1-2022
						17-1-2022
					
					
						 3805
						3805					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Subset
A subset is a portion of a set.  is a subset of
 is a subset of  (written
 (written  ) iff every member of
) iff every member of  is a member of
 is a member of  . If
. If  is a proper subset of
 is a proper subset of  (i.e., a subset other than the set itself), this is written
 (i.e., a subset other than the set itself), this is written  . If
. If  is not a subset of
 is not a subset of  , this is written
, this is written  . (The notation
. (The notation  is generally not used, since
 is generally not used, since  automatically means that
 automatically means that  and
 and  cannot be the same.)
 cannot be the same.)
The subsets (i.e., power set) of a given set can be found using Subsets[list].
An efficient algorithm for obtaining the next higher number having the same number of 1 bits as a given number (which corresponds to computing the next subset) is given by Gosper (1972) in PDP-10 assembler.
The set of subsets of a set  is called the power set of
 is called the power set of  , and a set of
, and a set of  elements has
 elements has  subsets (including both the set itself and the empty set). This follows from the fact that the total number of distinct k-subsets on a set of
 subsets (including both the set itself and the empty set). This follows from the fact that the total number of distinct k-subsets on a set of  elements is given by the binomial sum
 elements is given by the binomial sum
	
		
			|  | 
	
For sets of  , 2, ... elements, the numbers of subsets are therefore 2, 4, 8, 16, 32, 64, ... (OEIS A000079). For example, the set
, 2, ... elements, the numbers of subsets are therefore 2, 4, 8, 16, 32, 64, ... (OEIS A000079). For example, the set ![<span style=]() {1}" src="https://mathworld.wolfram.com/images/equations/Subset/Inline22.svg" style="height:22px; width:22px" /> has the two subsets
{1}" src="https://mathworld.wolfram.com/images/equations/Subset/Inline22.svg" style="height:22px; width:22px" /> has the two subsets  and
 and ![<span style=]() {1}" src="https://mathworld.wolfram.com/images/equations/Subset/Inline24.svg" style="height:22px; width:22px" />. Similarly, the set
{1}" src="https://mathworld.wolfram.com/images/equations/Subset/Inline24.svg" style="height:22px; width:22px" />. Similarly, the set ![<span style=]() {1,2}" src="https://mathworld.wolfram.com/images/equations/Subset/Inline25.svg" style="height:22px; width:43px" /> has subsets
{1,2}" src="https://mathworld.wolfram.com/images/equations/Subset/Inline25.svg" style="height:22px; width:43px" /> has subsets  (the empty set),
 (the empty set), ![<span style=]() {1}" src="https://mathworld.wolfram.com/images/equations/Subset/Inline27.svg" style="height:22px; width:22px" />,
{1}" src="https://mathworld.wolfram.com/images/equations/Subset/Inline27.svg" style="height:22px; width:22px" />, ![<span style=]() {2}" src="https://mathworld.wolfram.com/images/equations/Subset/Inline28.svg" style="height:22px; width:22px" />, and
{2}" src="https://mathworld.wolfram.com/images/equations/Subset/Inline28.svg" style="height:22px; width:22px" />, and ![<span style=]() {1,2}" src="https://mathworld.wolfram.com/images/equations/Subset/Inline29.svg" style="height:22px; width:43px" />.
{1,2}" src="https://mathworld.wolfram.com/images/equations/Subset/Inline29.svg" style="height:22px; width:43px" />.
REFERENCES
Courant, R. and Robbins, H. What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. 
Oxford, England: Oxford University Press, p. 109, 1996.
Gosper, R. W. Item 175 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/hacks.html#item175.
Kamke, E. Theory of Sets. New York: Dover, p. 6, 1950.
Ruskey, F. "Information of Subsets of a Set." http://www.theory.csc.uvic.ca/~cos/inf/comb/SubsetInfo.html.Skiena, S. "Binary Representation and Random Sets." §1.5.2 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 41-42, 1990.
Sloane, N. J. A. Sequence A000079/M1129 in "The On-Line Encyclopedia of Integer Sequences."
				
				
					
					 الاكثر قراءة في  نظرية المجموعات
					 الاكثر قراءة في  نظرية المجموعات					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة