Read More
Date: 2-2-2016
![]()
Date: 2-1-2022
![]()
Date: 14-2-2017
![]() |
Let and
be disjoint totally ordered sets with order types
and
. Then the ordinal sum is defined at set
where, if
and
are both from the same subset, the order is the same as in the subset, but if
is from
and
is from
, then
has order type
(Ciesielski 1997, p. 48; Dauben 1990, p. 104; Moore 1982, p. 40).
One should note that in the infinite case, order type addition is not commutative, although it is associative. For example,
![]() |
(1) |
In addition, , with
the least element, is order isomorphic to
, but not to
, with
the greatest element, since it has a greatest element and the other does not.
An inductive definition for ordinal addition states that for any ordinal number ,
![]() |
(2) |
and
![]() |
(3) |
If is a limit ordinal, then
is the least ordinal greater than any ordinal in the set
(Rubin 1967, p. 188; Suppes 1972, p. 205).
REFERENCES:
Ciesielski, K. Set Theory for the Working Mathematician. Cambridge, England: Cambridge University Press, 1997.
Dauben, J. W. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton, NJ: Princeton University Press, 1990.
Moore, G. H. Zermelo's Axiom of Choice: Its Origin, Development, and Influence. New York: Springer-Verlag, 1982.
Rubin, J. E. Set Theory for the Mathematician. New York: Holden-Day, 1967.
Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
سماحة السيد الصافي يؤكد ضرورة تعريف المجتمعات بأهمية مبادئ أهل البيت (عليهم السلام) في إيجاد حلول للمشاكل الاجتماعية
|
|
|