Read More
Date: 14-2-2017
1818
Date: 16-1-2022
1115
Date: 14-2-2017
1219
|
In the theory of transfinite ordinal numbers,
1. Every well ordered set has a unique ordinal number,
2. Every segment of ordinals (i.e., any set of ordinals arranged in natural order which contains all the predecessors of each of its elements) has an ordinal number which is greater than any ordinal in the segment, and
3. The set of all ordinals in natural order is well ordered.
Then by statements (3) and (1), has an ordinal . Since is in , it follows that by (2), which is a contradiction.
REFERENCES:
Burali-Forti, C. "Una questione sui numeri transfiniti." Rendiconti del Circolo Mat. di Palermo 11, 154-164, 1897.
Copi, I. M. "The Burali-Forti Paradox." Philos. Sci. 25, 281-286, 1958.
Curry, H. B. Foundations of Mathematical Logic. New York: Dover, p. 5, 1977.
Erickson, G. W. and Fossa, J. A. Dictionary of Paradox. Lanham, MD: University Press of America, pp. 29-30, 1998.
Mirimanoff, D. "Les antinomies de Russell et de Burali-Forti et le problème fondamental de la théorie des ensembles." Enseign. math. 19, 37-52, 1917.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|