المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
كفارة صيد الطيور
2025-04-06
نيماتودا حوصلات حبوب البحر المتوسط Heterodera lations
2025-04-06
كفارة الطيب في الاحرام
2025-04-06
Projecting DP-structure
2025-04-06
كفارة الصيد في الاحرام
2025-04-06
مقارنة بين أنواع نيماتودا الحوصلات التي تصيب محاصيل الحبوب الصغيرة في الوطن العربي
2025-04-06

عناصر القصد الجرمي
27-3-2016
العطرة Pelargonium odoratissimum (L.)
25-1-2021
لا تسمح للآخرين أن يتلاعبوا بك
14-9-2019
anacoluthon (n.)
2023-05-19
Pi Squared
10-3-2020
التـكلفـة الثـابـتـة والمـوازنـة المـرنـة فـي إطـار الموازنـة المـصرفـية
2024-04-19

French Curve  
  
1951   04:17 مساءً   date: 17-10-2021
Author : Feynman, R. P
Book or Source : Who Stole the Door?" In ,Surely You,re Joking, Mr. Feynman!: Adventures of a Curious Character. New York: W. W. Norton, 1997.
Page and Part : ...


Read More
Date: 28-11-2021 1925
Date: 18-12-2021 1404
Date: 20-8-2021 1302

French Curve

FrenchCurve

French curves are plastic (or wooden) templates having an edge composed of several different curves. French curves are used in drafting (or were before computer-aided design) to draw smooth curves of almost any desired curvature in mechanical drawings. Several typical French curves are illustrated above.

While an undergraduate at MIT, Feynman (1997, p. 23) used a French curve to illustrate the fallacy of learning without understanding. When he pointed out to his colleagues in a mechanical drawing class the "amazing" fact that the tangent at the lowest (or highest) point on the curve was horizontal, none of his classmates realized that this was trivially true, since the derivative (tangent) at an extremum (lowest or highest point) of any curve is zero (horizontal), as they had already learned in calculus class.


REFERENCES:

Feynman, R. P. "Who Stole the Door?" In 'Surely You're Joking, Mr. Feynman!': Adventures of a Curious Character. New York: W. W. Norton, 1997.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.