Read More
Date: 22-7-2021
![]()
Date: 26-9-2016
![]()
Date: 7-7-2021
![]() |
A convex function is a continuous function whose value at the midpoint of every interval in its domain does not exceed the arithmetic mean of its values at the ends of the interval.
More generally, a function is convex on an interval
if for any two points
and
in
and any
where
,
![]() |
(Rudin 1976, p. 101; cf. Gradshteyn and Ryzhik 2000, p. 1132).
If has a second derivative in
, then a necessary and sufficient condition for it to be convex on that interval is that the second derivative
for all
in
.
If the inequality above is strict for all and
, then
is called strictly convex.
Examples of convex functions include for
or even
,
for
, and
for all
. If the sign of the inequality is reversed, the function is called concave.
REFERENCES:
Eggleton, R. B. and Guy, R. K. "Catalan Strikes Again! How Likely is a Function to be Convex?" Math. Mag. 61, 211-219, 1988.
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 1132, 2000.
Rudin, W. Principles of Mathematical Analysis, 3rd ed. New York: McGraw-Hill, 1976.
Webster, R. Convexity. Oxford, England: Oxford University Press, 1995.
|
|
لخفض ضغط الدم.. دراسة تحدد "تمارين مهمة"
|
|
|
|
|
طال انتظارها.. ميزة جديدة من "واتساب" تعزز الخصوصية
|
|
|
|
|
مشاتل الكفيل تزيّن مجمّع أبي الفضل العبّاس (عليه السلام) بالورد استعدادًا لحفل التخرج المركزي
|
|
|