المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05
مـعاييـر تحـسيـن الإنـتاجـيـة
2024-11-05
نـسـب الإنـتاجـيـة والغـرض مـنها
2024-11-05
المـقيـاس الكـلـي للإنتاجـيـة
2024-11-05
الإدارة بـمؤشـرات الإنـتاجـيـة (مـبادئ الإنـتـاجـيـة)
2024-11-05
زكاة الفطرة
2024-11-05

8- عِنبسة بن سُحَيم (103 - 107هـ /721 - 726م)
23-11-2016
معنى قاعدة اليد امارة الملك
2024-08-05
صف المسارات الايضية Metabolic Pathway Alignment
28-1-2019
باكليه ، جان كلود اوجين
15-10-2015
السجود واحكامه
2024-10-26
طبيعة الخطورة الإجرامية
22-4-2017

Completely Regular Space  
  
2072   04:35 مساءً   date: 16-7-2021
Author : Cullen, H. F.
Book or Source : Normal Spaces. Completely Regular Spaces." §18 in Introduction to General Topology. Boston, MA: Heath
Page and Part : ...


Read More
Date: 12-8-2021 3497
Date: 22-9-2016 1226
Date: 1-6-2021 1767

Completely Regular Space

A topological space X such that for every closed subset C of X and every point x in XC, there is a continuous function f:X->[0,1] such that f(x)=0 and f(C)={1}.

This is the definition given by most authors (Kelley 1955, p. 117; Willard 1970, pp. 94-95). However, some authors (e.g., Cullen 1968, p. 130) require the additional condition that X be a T1-space. In any case, every completely regular space is regular, and the converse is not true.


REFERENCES:

Cullen, H. F. "Normal Spaces. Completely Regular Spaces." §18 in Introduction to General Topology. Boston, MA: Heath, pp. 118-140, 1968.

Joshi, K. D. Introduction to General Topology. New Delhi, India: Wiley, p. 163, 1983.

Kelley, J. L. General Topology. New York: Van Nostrand, 1955.

Willard, S. "Regularity and complete regularity." §14 in General Topology. Reading, MA: Addison-Wesley, pp. 92-99, 1970.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.