المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

استحباب قول سمع الله لمن حمده بعد الانتصاب
1-12-2015
جزم المضارع
22-10-2014
Aromatase
8-6-2017
A-movement Summary
26-1-2023
عمال معاوية وولاته
6-4-2016
خروج الامام الى العراق
16-3-2016

Whitehead Link  
  
1783   06:28 مساءً   date: 28-6-2021
Author : Kauffman, L.
Book or Source : Knots and Physics. Teaneck, NJ: World Scientific
Page and Part : ...


Read More
Date: 22-9-2016 1674
Date: 5-8-2021 1445
Date: 26-5-2021 1543

Whitehead Link

WhiteheadLink

The prime link 05-0201, illustrated above, with braid word sigma_1^2sigma_2^2sigma_1^(-1)sigma_2^(-2) or sigma_1sigma_2^(-1)sigma_1sigma_2^(-2) and Jones polynomial

 V(t)=t^(-3/2)(-1+t-2t^2+t^3-2t^4+t^5).

The Whitehead link has linking number 0. It was discovered by Whitehead in 1934 (Whitehead 1962, pp. 21-50) as a counterexample to a piece of an attempted proof of the Poincaré conjecture (Milnor).


REFERENCES:

Kauffman, L. Knots and Physics. Teaneck, NJ: World Scientific, p. 36, 1991.

Livingston, C. Knot Theory. Washington, DC: Math. Assoc. Amer., pp. 9 and 37-38, 1993.

Milnor, J. "The Poincaré Conjecture." https://www.claymath.org/millennium/Poincare_Conjecture/Official_Problem_Description.pdf.

Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, pp. 68, 72, and 137, 1976.

Whitehead, J. H. C. Mathematical Works, Vol. 2. London: Pergamon Press, pp. 21-50, 1962.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.