المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

Friedel-Crafts Acylation
27-9-2020
محمد بن منصور بن جميل
13-08-2015
الساكن
13-7-2022
الفرق بيـن القاعدة الفقهية والقاعدة الأصولية
28-6-2018
وسائل الاعلام واثرها على التنشئة الاجتماعية للطفل
13-6-2017
الاختصاص النوعي للمحاكم الإدارية في الجزائر
1-9-2020

Palindromic Number  
  
1294   02:22 صباحاً   date: 12-1-2021
Author : Beiler, A. H.
Book or Source : Recreations in the Theory of Numbers: The Queen of Mathematical Entertains. New York: Dover, 1964.
Page and Part : ...


Read More
Date: 4-11-2019 556
Date: 23-9-2020 1973
Date: 16-12-2020 669

Palindromic Number

PalindromicNumbers

A palindromic number is a number (in some base b) that is the same when written forwards or backwards, i.e., of the form a_1a_2...a_2a_1. The first few palindromic numbers are therefore are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, ... (OEIS A002113). The number of palindromic numbers less than a given number are illustrated in the plot above.

A number n can be tested to see if it is palindromic in the Wolfram Language using PalindromeQ[n].

The numbers of palindromic numbers less than 10, 10^210^3, ... are 9, 18, 108, 198, 1098, 1998, 10998, ... (OEIS A050250). This sequence is given by the closed-form formula

 a(n)={2(10^(n/2)-1)   for n even; 11·10^((n-1)/2)-2   for n odd.

(1)

Banks et al. (2004) proved that almost all palindromes (in any base) are composite, with the precise statement being

 P(x)∼O((N(x)lnlnlnx)/(lnlnx)),

(2)

where P(x) is the number of palindromic primes <=x and N(x) is the number of palindromic numbers <=x.

The sum of the reciprocals of the palindromic numbers converges to a constant  approx 3.37018 (OEIS A118031; Rivera), where the value has been computed using all palindromic numbers <=10^8 is 3.370001832....

The first few n for which the pronic number P_n is palindromic are 1, 2, 16, 77, 538, 1621, ... (OEIS A028336), and the first few palindromic numbers which are pronic are 2, 6, 272, 6006, 289982, ... (OEIS A028337). The first few numbers whose squares are palindromic are 1, 2, 3, 11, 22, 26, ... (OEIS A002778), and the first few palindromic squares are 1, 4, 9, 121, 484, 676, ... (OEIS A002779).

There are no palindromic square n-digit numbers for n=2, 4, 8, 10, 14, 18, 20, 24, 30, ... (OEIS A034822).

Numbers that are not the sum of two palindromes (where 0 is itself considered a palindrome) are 21, 32, 43, 54, 65, 76, 87, 98, 201, 1031, ... (OEIS A035137). Numbers that are not the difference of two palindromes are 1020, 1029, 1031, 1038, 1041, 1047, 1051, 1061, ... (OEIS A104444).


REFERENCES:

Banks, W. D.; Hart, D. N.; and Sakata, M. "Almost All Palindromes Are Composite." Preprint ESI 1456 (2004). Vienna, Austria: The Erwin Schrödinger International Institute for Mathematical Physics. Feb. 5, 2004. ftp://ftp.esi.ac.at:/pub/Preprints/esi1456.pdf.

Beiler, A. H. Recreations in the Theory of Numbers: The Queen of Mathematical Entertains. New York: Dover, 1964.

De Geest, P. "Palindromic Numbers and Other Recreational Topics." http://www.worldofnumbers.com/index.shtml.

De Geest, P. "Palindromic Products of Two Consecutive Integers." http://www.worldofnumbers.com/consec.htm.

De Geest, P. "Palindromic Squares." http://www.worldofnumbers.com/square.htm.

Dr. Pete. "The Math Forum. Ask Dr. Math: Questions & Answers from Our Archives. Palindromic Numbers." http://mathforum.org/dr.math/problems/akyildiz1.4.98.html.

Dr. Rob. "The Math Forum. Ask Dr. Math: Questions & Answers from Our Archives. Palindromic Numbers." http://mathforum.org/dr.math/problems/stang4.8.14.97.html.

Heinz, H. "Palindromes." http://www.magic-squares.net/palindromes.htm.

MathPages. "On General Palindromic Numbers." http://www.mathpages.com/home/kmath359.htm.

Pappas, T. "Numerical Palindromes." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, p. 146, 1989.

Rivera, C. "Problems & Puzzles: Puzzle 056-The Honaker's Constant." http://www.primepuzzles.net/puzzles/puzz_056.htm.

Sloane, N. J. A. Sequences A002113/M0484, A002385/M0670, A002778/M0907, A002779/M3371, A028336, A028337, A034822, A035137, A050250, and A118031 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.