المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تربية الماشية في جمهورية مصر العربية
2024-11-06
The structure of the tone-unit
2024-11-06
IIntonation The tone-unit
2024-11-06
Tones on other words
2024-11-06
Level _yes_ no
2024-11-06
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05

كلام في معنى الحكم وانه لله وحده
7-10-2014
غزوة بني جذيمة
29-7-2019
مشكلة تعدّد القراءات
10-10-2014
طرق الاتصال بين العراق والشام قديما
9-10-2016
سعد بن سعيد البلخي
11-10-2017
Hereditary Fructose Intolerance
24-7-2018

Self Number  
  
662   02:34 صباحاً   date: 19-11-2020
Author : Gardner, M
Book or Source : Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman
Page and Part : ...


Read More
Date: 25-10-2020 567
Date: 4-5-2020 610
Date: 23-2-2020 625

Self Number

A number (usually base 10 unless specified otherwise) which has no digitaddition generator. Such numbers were originally called Colombian numbers (S. 1974). There are infinitely many such numbers, since an infinite sequence of self numbers can be generated from the recurrence relation

 C_k=8·10^(k-1)+C_(k-1)+8,

(1)

for k=2, 3, ..., where C_1=9. The first few self numbers are 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, ... (OEIS A003052).

An infinite number of 2-self numbers (i.e., base-2 self numbers) can be generated by the sequence

 C_k=2^j+C_(k-1)+1

(2)

for k=1, 2, ..., where C_1=1 and j is the number of digits in C_(k-1). An infinite number of n-self numbers can be generated from the sequence

 C_k=(n-2)n^(k-1)+C_(k-1)+(n-2)

(3)

for k=2, 3, ..., and

 C_1={n-1   for n even; n-2   for n odd.

(4)

Joshi (1973) proved that if k is odd, then m is a k-self number iff m is odd. Patel (1991) proved that 2k4k+2, and k^2+2k+1 are k-self numbers in every even base k>=4.


REFERENCES:

Cai, T. "On k-Self Numbers and Universal Generated Numbers." Fib. Quart. 34, 144-146, 1996.

Gardner, M. Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman, pp. 115-117, 122, 1988.

Joshi, V. S. Ph.D. dissertation. Gujarat University, Ahmadabad, 1973.

Kaprekar, D. R. The Mathematics of New Self-Numbers. Devaiali, pp. 19-20, 1963.

Patel, R. B. "Some Tests for k-Self Numbers." Math. Student 56, 206-210, 1991.

S., B. R. "Solution to Problem E 2048." Amer. Math. Monthly 81, 407, 1974.

Sloane, N. J. A. Sequence A003052/M2404 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.