Read More
Date: 14-2-2020
![]()
Date: 1-12-2019
![]()
Date: 13-1-2021
![]() |
Consider decomposition the factorial into multiplicative factors
arranged in nondecreasing order. For example,
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
and
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
The numbers of such partitions for , 3, ... are 1, 1, 3, 3, 10, 10, 30, 75, 220, ... (OEIS A085288).
Now consider the number of such decompositions that are of length . For instance,
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
The numbers of such partitions for , 3, ... are 0, 0, 1, 1, 2, 2, 5, 12, 31, 31, 78, 78, 191, ... (OEIS A085289).
Now let
![]() |
(19) |
i.e., is the least prime factor raised to its appropriate power in the factorization of length
. For
, 5, ...,
is given by 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, ... (OEIS A085290).
Finally, define
![]() |
(20) |
where is the natural logarithm. Therefore, for the case
,
and
![]() |
(21) |
For large ,
approaches a constant
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
(OEIS A085291), known as the Alladi-Grinstead constant, where
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
(OEIS A085361). The constant is also associated with so-called alternating Lüroth representations (Finch 2003, p. 62).
The series for can be transformed to one with much better convergence properties by expanding the addend about infinity to get
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
Interchanging the order of summation then gives
![]() |
![]() |
![]() |
(28) |
![]() |
![]() |
![]() |
(29) |
where is the Riemann zeta function.
REFERENCES:
Alladi, K. and Grinstead, C. "On the Decomposition of into Prime Powers." J. Number Th. 9, 452-458, 1977.
Finch, S. R. "Alladi-Grinstead Constant." §2.9 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 120-122, 2003.
Guy, R. K. "Factorial as the Product of
Large Factors." §B22 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 79, 1994.
Sloane, N. J. A. Sequences A085288, A085289, A085290, A085291, and A085361 in "The On-Line Encyclopedia of Integer Sequences."
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|