Read More
Date: 19-10-2019
633
Date: 29-11-2020
670
Date: 28-7-2020
1145
|
Let be a prime with digits and let be a constant. Call an "-prime" if the concatenation of the first digits of (ignoring the decimal point if one is present) give . Constant primes are therefore a special type of integer sequence primes, with e-primes, pi-primes, and phi-primes being perhaps the most prominent examples.
The following table summarizes the indices of known constant primes for some named mathematical constants.
constant | name of primes | OEIS | giving prime | |
Apéry's constant | A119334 | 10, 55, 109, 141 | ||
Catalan's constant | A118328 | 52, 276, 25477 | ||
Champernowne constant | A071620 | 10, 14, 24, 235, 2804, 4347, 37735, 68433 | ||
Copeland-Erdős constant | A227530 | 1, 2, 4, 11, 353, 355, 499, 1171, 1543, 5719, 11048 | ||
e | e-prime | A064118 | 1, 3, 7, 85, 1781, 2780, 112280, 155025 | |
Euler-Mascheroni constant | A065815 | 1, 3, 40, 185, 1038, 22610, 179849 | ||
Glaisher-Kinkelin constant | A118420 | 7, 10, 18, 64, 71, 527, 1992, 5644, 8813, 19692 | ||
Golomb-Dickman constant | A174974 | 6, 27, 57, 60, 1659, 2508 | ||
golden ratio | phi-prime | A064119 | 7, 13, 255, 280, 97241 | |
Khinchin's constant | A118327 | 1, 407, 878, 4443, 4981, 6551, 13386, 28433 | ||
natural logarithm of 2 | A228226 | 321, 466, 1271, 15690, 18872, 89973 | ||
natural logarithm of 10 | A228240 | 1, 2, 40, 242, 842, 1541, 75067 | ||
pi | pi-prime | A060421 | 2, 6, 38, 16208, 47577, 78073, 613373 | |
Pythagoras's constant | A115377 | 55, 97, 225, 11260, 11540 | ||
Soldner's constant | A122422 | 4, 144, 227, 444, 19474 | ||
Theodorus's constant | A119344 | 2, 3, 19, 111, 116, 641, 5411, 170657 |
The following table summarizes discoverers and discovery dates for some large constant primes.
constant | digits | discoverer |
Apéry's constant | 19692 | E. W. Weisstein (Apr. 29, 2006) |
Champernowne constant | 37735 | E. W. Weisstein (Jul. 15, 2013) |
Copeland-Erdős constant | 11048 | E. W. Weisstein (Jul. 14, 2013) |
Copeland-Erdős constant | 68433 | E. W. Weisstein (Aug. 16, 2013) |
Copeland-Erdős constant | 97855 | E. W. Weisstein (Oct. 24, 2015) |
Copeland-Erdős constant | 292447 | M. Rodenkirch (Dec. 11, 2015) |
e | 112280 | E. W. Weisstein (Jul. 3, 2009) |
e | 155025 | E. W. Weisstein (Oct. 7, 2010) |
Euler-Mascheroni constant | 22610 | E. W. Weisstein (Apr. 25, 2006) |
Euler-Mascheroni constant | 179849 | E. W. Weisstein (Jun. 1, 2011) |
Khinchin's constant | 13386 | E. W. Weisstein (Apr. 26, 2006) |
Khinchin's constant | 28433 | E. W. Weisstein (Apr. 27, 2006) |
natural logarithm of 2 | 15690 | E. W. Weisstein (Aug. 17, 2013) |
natural logarithm of 2 | 18872 | E. W. Weisstein (Aug. 18, 2013) |
natural logarithm of 2 | 89973 | E. W. Weisstein (Oct. 28, 2015) |
natural logarithm of 10 | 75067 | E. W. Weisstein (Oct. 10, 2015) |
pi | 47577 | E. W. Weisstein (Apr. 1, 2006) |
pi | 16208 | E. W. Weisstein (Jan. 18, 2006) |
pi | 78073 | E. W. Weisstein (Jul. 13, 2006) |
pi | 613373 | A. Bondrescu (May 29, 2016) |
golden ratio | 97289 | E. W. Weisstein (Jun. 4, 2009) |
Pythagoras's constant | 11260 | E. W. Weisstein (Jan. 21, 2006) |
Pythagoras's constant | 11540 | E. W. Weisstein (Jan. 21, 2006) |
Theodorus's constant | 170657 | E. W. Weisstein (Aug. 18, 2013) |
The following table summarizes the values of known constant primes for some named mathematical constants. The first of the -primes (where is Pythagoras's constant) was found by J. Earls (Pickover 2002, p. 334) and, contrary to Pickover's claim, is actually the smallest (rather than the largest known) example.
constant | OEIS | primes | |
Apéry's constant | A119333 | 1202056903, 1202056903159594285399738161511449990764986292340498881, ... | |
Champernowne constant | A176942 | 1234567891, 12345678910111, 123456789101112131415161, ... | |
Catalan's constant | A118329 | 9159655941772190150546035149323841107741493742816721, ... | |
Copeland-Erdős constant | A227529 | 2, 23, 2357, 23571113171, ..., | |
e | A007512 | 2, 271, 2718281, ... | |
Euler-Mascheroni constant | A072952 | 5, 577, 5772156649015328606065120900824024310421, ... | |
Glaisher-Kinkelin constant | A118419 | 1282427, 1282427129, 128242712910062263, ... | |
Golomb-Dickman constant | A174975 | 624329, 624329988543550870992936383, ... | |
golden ratio | A064117 | 1618033, 1618033988749, ... | |
natural logarithm of 10 | A228241 | 2, 23, 2302585092994045684017991454684364207601, ... | |
pi | A005042 | 3, 31, 314159, 31415926535897932384626433832795028841, ... | |
Pythagoras's constant | A115453 | 1414213562373095048801688724209698078569671875376948073, ... | |
Soldner's constant | A122422 | 1451, ... | |
Theodorus's constant | A119343 | 17, 173, 1732050807568877293, ... |
REFERENCES:
Pickover, C. A. The Mathematics of Oz: Mental Gymnastics from Beyond the Edge. New York: Cambridge University Press, 2002.
Sloane, N. J. A. Sequences A005042, A007512, A060421, A064117, A064118, A064119, A065815, A071620, A072952, A115377, A115453, A118327, A118328, A118329, A118419, A118420, A119333, A119334, A119343, A119344, A122421, A122422, A174974, A174975, A176942, A227529, A227530, A228226, A228240, and A228241 in "The On-Line Encyclopedia of Integer Sequences."
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|