تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Kepler’s third law
المؤلف:
A. Roy, D. Clarke
المصدر:
Astronomy - Principles and Practice 4th ed
الجزء والصفحة:
p 169
9-8-2020
1631
Kepler’s third law
In the third law, Kepler obtained a relationship between the sizes of planetary orbits and the periods of revolution. Now it happens that the semi-major axis of a planetary orbit is the average size of the radius vector, or the mean distance, so that an alternative form of the third law is to say that the cube of the mean distance of a planet is proportional to the square of its period of revolution.
Hence, if a1 and T1 refer to the semi-major axis and sidereal period of a planet P1 moving about the Sun,
(1)
the constant being the same for any of the planetary orbits. If a2, a3, etc and T2, T3, etc refer to the semi-major axes and sidereal periods of the other planets P2, P3, etc moving about the Sun, then
The most convenient form of the constant is obtained by taking the planet to be the Earth in relation (1), expressing the distance in units of the Earth’s semi-major axis and the time in years.
Then, for the Earth, a1 = 1, T1 = 1 and so the constant becomes unity. For any other planet, consequently,
a3 = T2 (2)
showing that if we measure the sidereal period, T , of the planet, we can obtain its mean distance, a, from relation (2).
الاكثر قراءة في مواضيع عامة في علم الفلك
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
