المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

الرسائل الإعلامية والتفكير الناقد Critical thinking
28-1-2023
Summary Constituent structure
28-1-2022
أقمار اصطناعية (توابع) في المدار
21-3-2022
ما هي مميزات المبيدات الجهازية؟
2023-05-18
النّجاة من آل فرعون
10-10-2014
Grenz-Formel
22-5-2019

Irrational Number  
  
863   01:47 صباحاً   date: 24-7-2020
Author : Bailey, D. H. and Crandall, R. E.
Book or Source : "Random Generators and Normal Numbers." Exper. Math. 11
Page and Part : ...


Read More
Date: 8-11-2020 990
Date: 10-11-2020 601
Date: 5-8-2020 765

Irrational Number

An irrational number is a number that cannot be expressed as a fraction p/q for any integers p and q. Irrational numbers have decimal expansions that neither terminate nor become periodic. Every transcendental number is irrational.

There is no standard notation for the set of irrational numbers, but the notations Q^_R-Q, or RQ, where the bar, minus sign, or backslash indicates the set complement of the rational numbers Q over the reals R, could all be used.

The most famous irrational number is sqrt(2), sometimes called Pythagoras's constant. Legend has it that the Pythagorean philosopher Hippasus used geometric methods to demonstrate the irrationality of sqrt(2) while at sea and, upon notifying his comrades of his great discovery, was immediately thrown overboard by the fanatic Pythagoreans. Other examples include sqrt(3)epi, etc. The Erdős-Borwein constant

E = sum_(n=1)^(infty)1/(2^n-1)

(1)

= sum_(n=1)^(infty)(d(n))/(2^n)

(2)

= 1.606695152415291763...

(3)

(OEIS A065442; Erdős 1948, Guy 1994), where d(n) is the numbers of divisors of n, and a set of generalizations (Borwein 1992) are also known to be irrational (Bailey and Crandall 2002).

Numbers of the form n^(1/m) are irrational unless n is the mth power of an integer. Numbers of the form log_nm, where log is the logarithm, are irrational if m and n are integers, one of which has a prime factor which the other lacks. e^r is irrational for rational r!=0cosr is irrational for every rational number r!=0 (Niven 1956, Stevens 1999), and cos(theta) (for theta measured in degrees) is irrational for every rational 0 degrees<theta<90 degrees with the exception of theta=60 degrees (Niven 1956). tanr is irrational for every rational r!=0 (Stevens 1999).

The irrationality of e was proven by Euler in 1737; for the general case, see Hardy and Wright (1979, p. 46). pi^n is irrational for positive integral n. The irrationality of pi itself was proven by Lambert in 1760; for the general case, see Hardy and Wright (1979, p. 47). Apéry's constant zeta(3) (where zeta(z) is the Riemann zeta function) was proved irrational by Apéry (1979; van der Poorten 1979). In addition, T. Rivoal (2000) recently proved that there are infinitely many integers n such that zeta(2n+1) is irrational. Subsequently, he also showed that at least one of zeta(5)zeta(7), ..., zeta(21) is irrational (Rivoal 2001).

From Gelfond's theorem, a number of the form a^b is transcendental (and therefore irrational) if a is algebraic !=0, 1 and b is irrational and algebraic. This establishes the irrationality of Gelfond's constant e^pi (since (-1)^(-i)=(e^(ipi))^(-i)=e^pi), and 2^(sqrt(2)). Nesterenko (1996) proved that pi+e^pi is irrational. In fact, he proved that pie^pi and Gamma(1/4) are algebraically independent, but it was not previously known that pi+e^pi was irrational.

Given a polynomial equation

 x^m+c_(m-1)x^(m-1)+...+c_0=0,

(4)

where c_i are integers, the roots x_i are either integral or irrational. If cos(2theta) is irrational, then so are costhetasintheta, and tantheta.

Irrationality has not yet been established for 2^epi^epi^(sqrt(2)), or gamma (where gamma is the Euler-Mascheroni constant).

Quadratic surds are irrational numbers which have periodic continued fractions.

Hurwitz's irrational number theorem gives bounds of the form

 |alpha-p/q|<1/(l_nq^2)

(5)

for the best rational approximation possible for an arbitrary irrational number alpha, where the l_n are called Lagrange numbers and get steadily larger for each "bad" set of irrational numbers which is excluded.

The series

 sum_(n=1)^infty(sigma_k(n))/(n!),

(6)

where sigma_k(n) is the divisor function, is irrational for k=1 and 2.


REFERENCES:

Apéry, R. "Irrationalité de zeta(2) et zeta(3)." Astérisque 61, 11-13, 1979.

Bailey, D. H. and Crandall, R. E. "Random Generators and Normal Numbers." Exper. Math. 11, 527-546, 2002.

Preprint dated Feb. 22, 2003 available at https://www.nersc.gov/~dhbailey/dhbpapers/bcnormal.pdf.

Borwein, P. "On the Irrationality of Certain Series." Math. Proc. Cambridge Philos. Soc. 112, 141-146, 1992.

Courant, R. and Robbins, H. "Incommensurable Segments, Irrational Numbers, and the Concept of Limit." §2.2 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 58-61, 1996.

Erdős, P. "On Arithmetical Properties of Lambert Series." J. Indian Math. Soc. 12, 63-66, 1948.

Gourdon, X. and Sebah, P. "Irrationality Proofs." https://numbers.computation.free.fr/Constants/Miscellaneous/irrationality.html.

Guy, R. K. "Some Irrational Series." §B14 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 69, 1994.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.

Huylebrouck, D. "Similarities in Irrationality Proofs for piln2zeta(2), and zeta(3)." Amer. Math. Monthly 108, 222-231, 2001.

Manning, H. P. Irrational Numbers and Their Representation by Sequences and Series. New York: Wiley, 1906.

Nagell, T. "Irrational Numbers" and "Irrationality of the numbers e and pi." §12-13 in Introduction to Number Theory. New York: Wiley, pp. 38-40, 1951.

Nesterenko, Yu. "Modular Functions and Transcendence Problems." C. R. Acad. Sci. Paris Sér. I Math. 322, 909-914, 1996.

Nesterenko, Yu. V. "Modular Functions and Transcendence Questions." Mat. Sb. 187, 65-96, 1996.

Niven, I. M. Irrational Numbers. New York: Wiley, 1956.

Niven, I. M. Numbers: Rational and Irrational. New York: Random House, 1961.

Pappas, T. "Irrational Numbers & the Pythagoras Theorem." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 98-99, 1989.

Rivoal, T. "La fonction Zeta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs." Comptes Rendus Acad. Sci. Paris 331, 267-270, 2000.

Rivoal, T. "Irrationalité d'au moins un des neuf nombres zeta(5)zeta(7), ..., zeta(21)." 25 Apr 2001. https://arxiv.org/abs/math.NT/0104221.

Sloane, N. J. A. Sequence A065442 in "The On-Line Encyclopedia of Integer Sequences."

Stevens, J. "Zur Irrationalität von pi." Mitt. Math. Ges. Hamburg 18, 151-158, 1999.

van der Poorten, A. "A Proof that Euler Missed... Apéry's Proof of the Irrationality of zeta(3)." Math. Intel. 1, 196-203, 1979.

Weisstein, E. W. "Books about Irrational Numbers." https://www.ericweisstein.com/encyclopedias/books/IrrationalNumbers.html.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.