Read More
Date: 19-2-2020
680
Date: 22-2-2020
1438
Date: 18-8-2020
1419
|
In the early 1960s, B. Birch and H. P. F. Swinnerton-Dyer conjectured that if a given elliptic curve has an infinite number of solutions, then the associated -series has value 0 at a certain fixed point. In 1976, Coates and Wiles showed that elliptic curves with complex multiplication having an infinite number of solutions have -series which are zero at the relevant fixed point (Coates-Wiles theorem), but they were unable to prove the converse. V. Kolyvagin extended this result to modular curves.
REFERENCES:
Birch, B. and Swinnerton-Dyer, H. "Notes on Elliptic Curves. II." J. reine angew. Math. 218, 79-108, 1965.
Cipra, B. "Fermat Prover Points to Next Challenges." Science 271, 1668-1669, 1996.
Clay Mathematics Institute. "The Birch and Swinnerton-Dyer Conjecture." https://www.claymath.org/millennium/Birch_and_Swinnerton-Dyer_Conjecture/.
Ireland, K. and Rosen, M. "New Results on the Birch-Swinnerton-Dyer Conjecture." §20.5 in A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, pp. 353-357, 1990.
Mazur, B. and Stevens, G. (Eds.). p-Adic Monodromy and the Birch and Swinnerton-Dyer Conjecture. Providence, RI: Amer. Math. Soc., 1994.
Wiles, A. "The Birch and Swinnerton-Dyer Conjecture." https://www.claymath.org/millennium/Birch_and_Swinnerton-Dyer_Conjecture/BSD.pdf.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|