Read More
Date: 10-9-2020
![]()
Date: 7-10-2020
![]()
Date: 5-2-2016
![]() |
Lucas's theorem states that if be a squarefree integer and
a cyclotomic polynomial, then
![]() |
(1) |
where and
are integer polynomials of degree
and
, respectively. This identity can be expressed as
![]() |
(2) |
with and
symmetric polynomials. The following table gives the first few
and
s (Riesel 1994, pp. 443-456).
![]() |
![]() |
![]() |
2 | ![]() |
1 |
3 | ![]() |
1 |
5 | ![]() |
![]() |
6 | ![]() |
![]() |
7 | ![]() |
![]() |
10 | ![]() |
![]() |
REFERENCES:
Brent, R. P. "On Computing Factors of Cyclotomic Polynomials." Math. Comput. 61, 131-149, 1993.
Kraitchik, M. Recherches sue la théorie des nombres, tome I. Paris: Gauthier-Villars, pp. 126-128, 1924.
Riesel, H. "Lucas's Formula for Cyclotomic Polynomials." In tables at end of Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 443-456, 1994.
|
|
لخفض ضغط الدم.. دراسة تحدد "تمارين مهمة"
|
|
|
|
|
طال انتظارها.. ميزة جديدة من "واتساب" تعزز الخصوصية
|
|
|
|
|
مشاتل الكفيل تزيّن مجمّع أبي الفضل العبّاس (عليه السلام) بالورد استعدادًا لحفل التخرج المركزي
|
|
|