المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الكيمياء
عدد المواضيع في هذا القسم 11123 موضوعاً
علم الكيمياء
الكيمياء التحليلية
الكيمياء الحياتية
الكيمياء العضوية
الكيمياء الفيزيائية
الكيمياء اللاعضوية
مواضيع اخرى في الكيمياء
الكيمياء الصناعية

Untitled Document
أبحث عن شيء أخر
تربية الماشية في جمهورية مصر العربية
2024-11-06
The structure of the tone-unit
2024-11-06
IIntonation The tone-unit
2024-11-06
Tones on other words
2024-11-06
Level _yes_ no
2024-11-06
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05

أنواع الرسوم وتقديرها
2024-05-22
الإصلاح في عاشوراء
2024-08-09
زيد الشحام
9-9-2016
إبطال الآراء المنحرفة المتعلقة بعلم الله تعالى
24-10-2014
ماذا يطلق على الخطوط المتغلظة والحواف الموجودة على اجنحة الحشرات؟
14-1-2021
خواص النحاس
30-4-2018

Transcription of DNA  
  
2275   01:43 صباحاً   date: 25-12-2019
Author : ..................
Book or Source : LibreTexts Project
Page and Part : .................


Read More
Date: 27-8-2018 1673
Date: 24-8-2018 2032
Date: 25-12-2019 2276

Transcription of DNA

For the hereditary information in DNA to be useful, it must be “expressed,” that is, used to direct the growth and functioning of an organism. The first step in the processes that constitute DNA expression is the synthesis of RNA, by a template mechanism that is in many ways analogous to DNA replication. Because the RNA that is synthesized is a complementary copy of information contained in DNA, RNA synthesis is referred to as transcription.

There are three key differences between replication and transcription: (1) RNA molecules are much shorter than DNA molecules; only a portion of one DNA strand is copied or transcribed to make an RNA molecule. (2) RNA is built from ribonucleotides rather than deoxyribonucleotides. (3) The newly synthesized RNA strand does not remain associated with the DNA sequence it was transcribed from.

The DNA sequence that is transcribed to make RNA is called the template strand, while the complementary sequence on the other DNA strand is called the coding or informational strand. To initiate RNA synthesis, the two DNA strands unwind at specific sites along the DNA molecule. Ribonucleotides are attracted to the uncoiling region of the DNA molecule, beginning at the 3′ end of the template strand, according to the rules of base pairing. Thymine in DNA calls for adenine in RNA, cytosine specifies guanine, guanine calls for cytosine, and adenine requires uracil. RNA polymerase—an enzyme—binds the complementary ribonucleotide and catalyzes the formation of the ester linkage between ribonucleotides, a reaction very similar to that catalyzed by DNA polymerase (Figure 1.1). Synthesis of the RNA strand takes place in the 5′ to 3′ direction, antiparallel to the template strand. Only a short segment of the RNA molecule is hydrogen-bonded to the template strand at any time during transcription. When transcription is completed, the RNA is released, and the DNA helix reforms. The nucleotide sequence of the RNA strand formed during transcription is identical to that of the corresponding coding strand of the DNA, except that U replaces T.

19.10.jpg

Figure 1.1 A Schematic Diagram of RNA Transcription from a DNA Template. The representation of RNA polymerase is proportionately much smaller than the actual molecule, which encompasses about 50 nucleotides at a time.

Example 1.1

A portion of the template strand of a gene has the sequence 5′‑TCCATGAGTTGA‑3′. What is the sequence of nucleotides in the RNA that is formed from this template?

SOLUTION

Four things must be remembered in answering this question: (1) the DNA strand and the RNA strand being synthesized are antiparallel; (2) RNA is synthesized in a 5′ to 3′ direction, so transcription begins at the 3′ end of the template strand; (3) ribonucleotides are used in place of deoxyribonucleotides; and (4) thymine (T) base pairs with adenine (A), A base pairs with uracil (U; in RNA), and cytosine (C) base pairs with guanine (G). The sequence is determined to be 3′‑AGGUACUCAACU‑5′ (can also be written as 5′‑UCAACUCAUGGA‑3′).

Exercise 1.1

A portion of the template strand of a gene has the sequence 5′‑CCAGTGAATTGCCTAT‑3′. What is the sequence of nucleotides in the RNA that is formed from this template?

Three types of RNA are formed during transcription: messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA). These three types of RNA differ in function, size, and percentage of the total cell RNA (Table 1.1). mRNA makes up only a small percent of the total amount of RNA within the cell, primarily because each molecule of mRNA exists for a relatively short time; it is continuously being degraded and resynthesized. The molecular dimensions of the mRNA molecule vary according to the amount of genetic information a given molecule contains. After transcription, which takes place in the nucleus, the mRNA passes into the cytoplasm, carrying the genetic message from DNA to the ribosomes, the sites of protein synthesis. Elsewhere, we shall see how mRNA directly determines the sequence of amino acids during protein synthesis.

 

Table 1.1: Properties of Cellular RNA in Escherichia coli

Type Function Approximate Number of Nucleotides Percentage of Total Cell RNA
mRNA codes for proteins 100–6,000 ~3
rRNA component of ribosomes 120–2900 83
tRNA adapter molecule that brings the amino acid to the ribosome 75–90 14

Ribosomes are cellular substructures where proteins are synthesized. They contain about 65% rRNA and 35% protein, held together by numerous noncovalent interactions, such as hydrogen bonding, in an overall structure consisting of two globular particles of unequal size.

Molecules of tRNA, which bring amino acids (one at a time) to the ribosomes for the construction of proteins, differ from one another in the kinds of amino acid each is specifically designed to carry. A set of three nucleotides, known as a codon, on the mRNA determines which kind of tRNA will add its amino acid to the growing chain. Each of the 20 amino acids found in proteins has at least one corresponding kind of tRNA, and most amino acids have more than one.

The two-dimensional structure of a tRNA molecule has three distinctive loops, reminiscent of a cloverleaf (Figure 1.2). On one loop is a sequence of three nucleotides that varies for each kind of tRNA. This triplet, called the anticodon, is complementary to and pairs with the codon on the mRNA. At the opposite end of the molecule is the acceptor stem, where the amino acid is attached.

19.11.jpg

Figure 1.2" Transfer RNA. (a) In the two-dimensional structure of a yeast tRNA molecule for phenylalanine, the amino acid binds to the acceptor stem located at the 3′ end of the tRNA primary sequence. (The nucleotides that are not specifically identified here are slightly altered analogs of the four common ribonucleotides A, U, C, and G.) (b) In the three-dimensional structure of yeast phenylalanine tRNA, note that the anticodon loop is at the bottom and the acceptor stem is at the top right. (c) This shows a space-filling model of the tRNA.




هي أحد فروع علم الكيمياء. ويدرس بنية وخواص وتفاعلات المركبات والمواد العضوية، أي المواد التي تحتوي على عناصر الكربون والهيدروجين والاوكسجين والنتروجين واحيانا الكبريت (كل ما يحتويه تركيب جسم الكائن الحي مثلا البروتين يحوي تلك العناصر). وكذلك دراسة البنية تتضمن استخدام المطيافية (مثل رنين مغناطيسي نووي) ومطيافية الكتلة والطرق الفيزيائية والكيميائية الأخرى لتحديد التركيب الكيميائي والصيغة الكيميائية للمركبات العضوية. إلى عناصر أخرى و تشمل:- كيمياء عضوية فلزية و كيمياء عضوية لا فلزية.


إن هذا العلم متشعب و متفرع و له علاقة بعلوم أخرى كثيرة ويعرف بكيمياء الكائنات الحية على اختلاف أنواعها عن طريق دراسة المكونات الخلوية لهذه الكائنات من حيث التراكيب الكيميائية لهذه المكونات ومناطق تواجدها ووظائفها الحيوية فضلا عن دراسة التفاعلات الحيوية المختلفة التي تحدث داخل هذه الخلايا الحية من حيث البناء والتخليق، أو من حيث الهدم وإنتاج الطاقة .


علم يقوم على دراسة خواص وبناء مختلف المواد والجسيمات التي تتكون منها هذه المواد وذلك تبعا لتركيبها وبنائها الكيميائيين وللظروف التي توجد فيها وعلى دراسة التفاعلات الكيميائية والاشكال الأخرى من التأثير المتبادل بين المواد تبعا لتركيبها الكيميائي وبنائها ، وللظروف الفيزيائية التي تحدث فيها هذه التفاعلات. يعود نشوء الكيمياء الفيزيائية إلى منتصف القرن الثامن عشر . فقد أدت المعلومات التي تجمعت حتى تلك الفترة في فرعي الفيزياء والكيمياء إلى فصل الكيمياء الفيزيائية كمادة علمية مستقلة ، كما ساعدت على تطورها فيما بعد .