Read More
Date: 19-1-2019
644
Date: 8-3-2017
1620
Date: 13-3-2017
880
|
For a polynomial
(1) |
several classes of norms are commonly defined. The -norm is defined as
(2) |
for , giving the special cases
(3) |
|||
(4) |
|||
(5) |
Here, is called the polynomial height. Note that some authors (especially in the area of Diophantine analysis) use as a shorthand for and as a shorthand for , while others (especially in the area of computational complexity) used to denote the -norm and (Zippel 1993, p. 174).
Another class of norms is the -norms, defined by
(6) |
for , giving the special cases
(7) |
|||
(8) |
|||
(9) |
(Borwein and Erdélyi 1995, p. 6).
REFERENCES:
Borwein, P. and Erdélyi, T. "Norms on ." §1.1.E.3 in Polynomials and Polynomial Inequalities. New York: Springer-Verlag, pp. 6-7, 1995.
Zippel, R. Effective Polynomial Computation. Boston, MA: Kluwer, 1993.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|