Read More
Date: 22-11-2018
584
Date: 16-12-2018
551
Date: 22-11-2018
355
|
The hyperbolic cosine is defined as
(1) |
The notation is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix). This function describes the shape of a hanging cable, known as the catenary. It is implemented in the Wolfram Language as Cosh[z].
Special values include
(2) |
|||
(3) |
where is the golden ratio.
The derivative is given by
(4) |
where is the hyperbolic sine, and the indefinite integral by
(5) |
where is a constant of integration.
The hyperbolic cosine has Taylor series
(6) |
|||
(7) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Hyperbolic Functions." §4.5 inHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 83-86, 1972.
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
Jeffrey, A. "Hyperbolic Identities." §2.5 in Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 117-122, 2000.
Sloane, N. J. A. Sequence A010050 in "The On-Line Encyclopedia of Integer Sequences."
Spanier, J. and Oldham, K. B. "The Hyperbolic Sine and Cosine Functions." Ch. 28 in An Atlas of Functions.Washington, DC: Hemisphere, pp. 263-271, 1987.
Zwillinger, D. (Ed.). "Hyperbolic Functions." §6.7 in CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 476-481 1995.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|