المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
مقدمة لحروب (آشور بنيبال)
2025-04-04
عصر «آشور بنيبال» 669–626 ق.م
2025-04-04
حروب «إسرحدون» التي شنها على بلاد العرب
2025-04-04
أعمال (سنخرب) الداخلية
2025-04-04
خاتمة حياة سرجون
2025-04-04
نيماتودا حوصلات فول الصويا Heterodera glycines
2025-04-04

التجارة الخارجية و أسبـاب قيـامها
11-10-2018
حسن التعليل
25-03-2015
العالم المادي
18-7-2017
محمد بن أحمد بن محمد
11-8-2016
تعريف التكبر وما ورد في ذمه
20-8-2022
العلاقة بين الحرارة والحركة عند الكندي (القرن 3هـ/9م)
2023-04-30

Squaring  
  
1587   02:07 مساءً   date: 28-8-2018
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : المرجع الالكتروني للمعلوماتيه
Page and Part : ...


Read More
Date: 13-9-2019 3484
Date: 19-9-2018 3543
Date: 19-5-2019 1354

Squaring

Squaring is the geometric construction, using only compass and straightedge, of a square which has the same area as a given geometric figure. Squaring is also called quadrature. An object which can be constructed by squaring is called squarable.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.