Read More
Date: 18-7-2018
1057
Date: 25-7-2018
1195
Date: 25-7-2018
1566
|
In conical coordinates, Laplace's equation can be written
(1) |
where
(2) |
|||
(3) |
(Byerly 1959). Letting
(4) |
breaks (1) into the two equations,
(5) |
(6) |
Solving these gives
(7) |
(8) |
where are ellipsoidal harmonics. The regular solution is therefore
(9) |
However, because of the cylindrical symmetry, the solution is an th degree spherical harmonic.
REFERENCES:
Arfken, G. "Conical Coordinates ." §2.16 in Mathematical Methods for Physicists, 2nd ed. Orlando, FL: Academic Press, pp. 118-119, 1970.
Byerly, W. E. An Elementary Treatise on Fourier's Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. New York: Dover, p. 263, 1959.
Moon, P. and Spencer, D. E. Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, 2nd ed. New York: Springer-Verlag, pp. 39-40, 1988.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 514 and 659, 1953.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|