Read More
Date: 8-8-2019
3112
Date: 31-8-2019
2100
Date: 1-10-2019
2213
|
The operator representing the computation of a derivative,
(1)
|
sometimes also called the Newton-Leibniz operator. The second derivative is then denoted , the third , etc. The integral is denoted .
The differential operator satisfies the identity
(2)
|
where is a Hermite polynomial (Arfken 1985, p. 718), where the first few cases are given explicitly by
(3)
|
|||
(4)
|
|||
(5)
|
|||
(6)
|
|||
(7)
|
|||
(8)
|
The symbol can be used to denote the operator
(9)
|
(Bailey 1935, p. 8). A fundamental identity for this operator is given by
(10)
|
where is a Stirling number of the second kind (Roman 1984, p. 144), giving
(11)
|
|||
(12)
|
|||
(13)
|
|||
(14)
|
and so on (OEIS A008277). Special cases include
(15)
|
|||
(16)
|
|||
(17)
|
A shifted version of the identity is given by
(18)
|
(Roman 1984, p. 146).
REFERENCES:
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, 1985.
Bailey, W. N. Generalised Hypergeometric Series. Cambridge, England: University Press, 1935.
Roman, S. The Umbral Calculus. New York: Academic Press, pp. 59-63, 1984.
Sloane, N. J. A. Sequence A008277 in "The On-Line Encyclopedia of Integer Sequences."
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|