Read More
Date: 19-9-2018
![]()
Date: 2-5-2019
![]()
Date: 15-9-2019
![]() |
The operator representing the computation of a derivative,
![]() |
(1)
|
sometimes also called the Newton-Leibniz operator. The second derivative is then denoted , the third
, etc. The integral is denoted
.
The differential operator satisfies the identity
![]() |
(2)
|
where is a Hermite polynomial (Arfken 1985, p. 718), where the first few cases are given explicitly by
![]() |
![]() |
![]() |
(3)
|
![]() |
![]() |
![]() |
(4)
|
![]() |
![]() |
![]() |
(5)
|
![]() |
![]() |
![]() |
(6)
|
![]() |
![]() |
![]() |
(7)
|
![]() |
![]() |
![]() |
(8)
|
The symbol can be used to denote the operator
![]() |
(9)
|
(Bailey 1935, p. 8). A fundamental identity for this operator is given by
![]() |
(10)
|
where is a Stirling number of the second kind (Roman 1984, p. 144), giving
![]() |
![]() |
![]() |
(11)
|
![]() |
![]() |
![]() |
(12)
|
![]() |
![]() |
![]() |
(13)
|
![]() |
![]() |
![]() |
(14)
|
and so on (OEIS A008277). Special cases include
![]() |
![]() |
![]() |
(15)
|
![]() |
![]() |
![]() |
(16)
|
![]() |
![]() |
![]() |
(17)
|
A shifted version of the identity is given by
![]() |
(18)
|
(Roman 1984, p. 146).
REFERENCES:
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, 1985.
Bailey, W. N. Generalised Hypergeometric Series. Cambridge, England: University Press, 1935.
Roman, S. The Umbral Calculus. New York: Academic Press, pp. 59-63, 1984.
Sloane, N. J. A. Sequence A008277 in "The On-Line Encyclopedia of Integer Sequences."
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|