المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر
The structure of the tone-unit
2024-11-06
IIntonation The tone-unit
2024-11-06
Tones on other words
2024-11-06
Level _yes_ no
2024-11-06
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05
مـعاييـر تحـسيـن الإنـتاجـيـة
2024-11-05

العضلات في الابقار Muscles
2024-11-04
Inner Product
22-3-2021
Introduction to Seed Plants II: Angiosperms
23-11-2016
الأقاليم الطبيعية في العروض الوسطى- اقليم البراري والسهوب- المناخ والنبات والتربة
24-3-2022
اساليب تنظيم الحرية او تقييدها
2-4-2017
دية الضرب والعقوبة البدنية
13-1-2016

The classical image problem  
  
2200   04:08 مساءاً   date: 4-1-2017
Author : Richard Fitzpatrick
Book or Source : Classical Electromagnetism
Page and Part : p 172


Read More
Date: 20-12-2020 2277
Date: 16-2-2017 2239
Date: 16-10-2020 1820

The classical image problem

So, how do we actually solve Poisson's equation,

 (1.1)

in practice? In general, the answer is that we use a computer. However, there are a few situations, possessing a high degree of symmetry, where it is possible to find analytic solutions. Let us discuss some of these solutions. Suppose that we have a point charge q held a distance d from an infinite, grounded, conducting plate. Let the plate lie in the x-y plane and suppose that the point charge is located at coordinates (0, 0, d). What is the scalar potential above the plane? This is not a simple question because the point charge induces surface charges on the plate, and we do not know how these are distributed. What do we know in this problem? We know that the conducting plate is an equipotential. In fact, the potential of the plate is zero, since it is grounded. We also know that the potential at infinity is zero (this is our usual boundary condition for the scalar potential). Thus, we need to solve Poisson's equation in the region z > 0, for a single point charge q at position (0, 0, d), subject to the boundary conditions

 (1.2)

and

 (1.3)

as x2 + y2 + z2 → ∞. Let us forget about the real problem, for a minute, and concentrate on a slightly different one. We refer to this as the analogue problem. In the analogue problem we have a charge q located at (0, 0, d) and a charge –q located at (0, 0, -d) with no conductors present. We can easily find the scalar potential for this problem, since we know where all the charges are located. We get

 (1.4)

Note, however, that

 (1.5)

and

 (1.6)

as x2 + y2 + z2 → ∞. In addition, ϕanalogue satisfies Poisson's equation for a charge at (0, 0, d), in the region z > 0. Thus, ϕanalogue is a solution to the problem posed earlier, in the region z > 0. Now, the uniqueness theorem tells us that there is only one solution to Poisson's equation which satisfies a given, well-posed set of boundary conditions. So, ϕanalogue must be the correct potential in the region z > 0. Of course, ϕanalogue is completely wrong in the region z < 0. We know this because the grounded plate shields the region z < 0 from the point charge, so that ϕ = 0 in this region. Note that we are leaning pretty heavily on the uniqueness theorem here! Without this theorem, it would be hard to convince a skeptical person that ϕ = ϕanalogue is the correct solution in the region z > 0. Now that we know the potential in the region z > 0, we can easily work out the distribution of charges induced on the conducting plate. We already know that the relation between the electric field immediately above a conducting surface and the density of charge on the surface is

 (1.7)

In this case,

 (1.8)

so

 (1.9)

It follows from Eq. (1.4) that

 (1.10)

so

 (1.11)

Clearly, the charge induced on the plate has the opposite sign to the point charge. The charge density on the plate is also symmetric about the z-axis, and is largest where the plate is closest to the point charge. The total charge induced on the plate is

 (1.12)

which yields

 (1.13)

where r2 = x2 + y2. Thus,

 (1.14)

So, the total charge induced on the plate is equal and opposite to the point charge which induces it. Our point charge induces charges of the opposite sign on the conducting plate. This, presumably, gives rise to a force of attraction between the charge and the plate. What is this force? Well, since the potential, and, hence, the electric field, in the vicinity of the point charge is the same as in the analogue problem then the force on the charge must be the same as well. In the analogue problem there are two charges ±q a net distance 2d apart. The force on the charge at position (0, 0, d) (i.e., the real charge) is

 (1.15)

What, finally, is the potential energy of the system. For the analogue problem this is just

 (1.16)

Note that the fields on opposite sides of the conducting plate are mirror images of one another in the analogue problem. So are the charges (apart from the change in sign). This is why the technique of replacing conducting surfaces by imaginary charges is called ''the method of images". We know that the potential energy of a set of charges is equivalent to the energy stored in the electric field. Thus,

 (1.17)

In the analogue problem the fields on either side of the x-y plane are mirror images of one another, so E2(x, y, z) = E2(x, y,-z). It follows that

 (1.18)

In the real problem

 (1.19)

So,

 (1.20)

giving

 (1.21)

There is another method by which we can obtain the above result. Suppose that the charge is gradually moved towards the plate along the z-axis from infinity until it reaches position (0, 0, d). How much work is required to achieve this? We know that the force of attraction acting on the charge is

 (1.22)

Thus, the work required to move this charge by dz is

 (1.23)

The total work needed to move the charge from z = ∞ to z = d is

 (1.24)

Of course, this work is equivalent to the potential energy we evaluated earlier, and is, in turn, the same as the energy contained in the electric field. There are many different image problems, each of which involves replacing a conductor (e.g., a sphere) with an imaginary charge (or charges) which mimics the electric field in some region (but not everywhere). Unfortunately, we do not have time to discuss any more of these problems.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.