المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

معركة خيبر شاهد على افضلية علي (عليه السلام)
30-01-2015
الحديث الصحفي
10-4-2022
متى ابتدأ الوحي وكيف نزل ؟
5-6-2016
مصادر تسخين الهواء
2024-08-05
الغلاف الجوي لكوكب المشتري
8-3-2022
الآفات والأمراض التي تصيب التفاح
2023-09-14

Integral  
  
716   05:25 مساءاً   date: 1-1-2017
Author : Professor John W. Norbury
Book or Source : ELEMENTARY MECHANICS & THERMODYNAMICS
Page and Part : p 246


Read More
Date: 1-1-2017 717
Date: 2-1-2017 682
Date: 3-5-2017 720

Integral

1.1 Integral Equals Antiderivative

The derivative of y(x) = 3x is  = 3. The derivative of y(x) = x2 is = 2x. The derivative of y(x) = 5x3 is   = 15x2.  Let's play a game. I tell you the answer and you tell me the question. Or I tell you the derivative  and you tell me the original function y(x) that it came from. Ready?

We can generalize this to a rule.

Actually I have cheated. Let's look at the following functions

y(x) = 3x + 2

y(x) = 3x + 7

y(x) = 3x + 12

y(x) = 3x + C   (C is an arbitrary constant)

y(x) = 3x

All of them have the same derivative  = 3. Thus in our little game of re-constructing the original function y(x) from the derivative  there is always an ambiguity in that y(x) could always have some constant added to it. Thus the correct answers in our game are

If  = 3      then y(x) = 3x + constant

(Actually instead of always writing constant, let me just write C)

If = 2x     then y(x) = x2 + C

If = 15x2   then y(x) = 5x3 + C

If  = xn     then

This original function y(x) that we are trying to get is given a special name called the antiderivative or integral, but it's nothing more than the original function.

1.2 Integral Equals Area Under Curve

Let's see how to extract the integral from our original definition of derivative. The slope of a curve is  or  when the Δ increments are tiny. Notice that y(x) is a function of x but so also is  . Let's call it

   (1.1)

Thus if f(x) =  = 2x then y(x) = x2 + C, and similarly for the other examples. In equation (1.1) I have written  also because   is just a tiny version of . Obviously then

  (1.2)

or

   (1.3)

What happens if I add up many Δy's. For instance suppose you are aged 18. Then if I add up many age increments in your life, such as

Age = ΔAge1 + ΔAge2 + ΔAge3 + ΔAge4….

1 year + 3 years + 0.5 year + 5 years + 0.5 year + 5 years + 3 years = 18 years

I get your complete age. Thus if I add up all possible increments of Δy I get back y. That is

or symbolically

     (1.4)

where

   (1.5)

Thus Δyi is an area of a little shaded region. Add them all up and we have the total area under the curve. Thus

    (1.6)

Let's now make the little intervals Δyi and Δxi very tiny. Call them dy and dx. If I am using tiny intervals in my sum Σ I am going to use a new symbol ∫. Thus

 (1.7)

which is just the tiny version of (1.6). Notice that the dx ''cancels".

In formula (1.7) recall the following. The derivative is  and y is my original function which we called the integral or antiderivative. We now see that the integral or antiderivative or original function can be interpreted as the area under the derivative curve . By the way ∫ f dx reads ''integral of f with respect to x."

Summary: if

Summary of 1.1 and 1.2

E.g.

do a few more examples.

Example What is ∫x dx?

Solution The derivative function is f(x) =  = x. Therefore the original function must be . Thus

 

1.3 Definite and Indefinite Integrals

The integral ∫x dx is supposed to give us the area under the curve x, but our answer in the above example () doesn't look much like an area. We would expect the area to be a number.

Example What is the area under the curve f(x) = 4 between x1 = 1 and x2 = 6?

Solution This is easy because f(x) = 4 is just a horizontal straight line. The area is obviously  4 × 5 = 20.

Consider ∫ 4dx = 4x + c. This is called an indefinite integral or antiderivative. The integral which gives us the area is actually the definite integral written

     (1.8)

Let's explain this. The formula 4x+c by itself does not give the area directly. For an area we must always specify x1 and x2 so that we know what area we are talking about. In the previous example we got 4 × 5 = 20 from 4x2 - 4x1 = (4 × 6) - (4 × 1) = 24 - 4 = 20, which is the same as (1.8). Thus (1.8) must be the correct formula for area. Notice here that it doesn't matter whether we include the c because it cancels out. Thus ∫ 4dx = 4x + c is the antiderivative or indefinite integral and it gives a general formula for the area but not the value of the area itself. To evaluate the value of the area we need to specify the edges x1 and x2 of the area under consideration as we did in (1.8). Using (1.8) to work out the previous example we would write

    (1.9)

Example Evaluate the area under the curve f(x) = 3x2 between x1 = 3 and x2 = 5.

Solution




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.