المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05
أوجه الاستعانة بالخبير
2024-11-05
زكاة البقر
2024-11-05
الحالات التي لا يقبل فيها الإثبات بشهادة الشهود
2024-11-05
إجراءات المعاينة
2024-11-05
آثار القرائن القضائية
2024-11-05

المنهج الموضوعي في الجغرافيا السياحية- المنهج الحرفي
5-4-2022
glossolalia (n.)
2023-09-13
رنين باريوني baryon resonance
26-12-2017
النية
10-10-2016
Stickland Reaction
25-3-2020
تنقّل الشعر في الأقاليم
22-03-2015

Duncan Farquharson Gregory  
  
127   03:03 مساءاً   date: 20-10-2016
Author : E Koppelmann
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 30-10-2016 26
Date: 26-10-2016 28
Date: 5-11-2016 165

Born: 13 April 1813 in Edinburgh, Scotland

Died: 23 February 1844 in Edinburgh, Scotland


Duncan Gregory's great great grandfather was James Gregory and he was the youngest son of another James Gregory (1753-1821) who was professor of medicine at Edinburgh University. His mother was Isabella McLeod and she was left to bring up the family after Duncan's father died when he was seven years old.

Duncan was educated by his mother until he was ten years old then, after this, by a private tutor. His liking for constructing mechanical devices was noticed at this early age. In October 1824 he entered Edinburgh Academy (where Maxwell and D'Arcy Thompson were to be educated). He showed great promise at school and, during the winter of 1827, Gregory was sent to an academy in Geneva where his mathematical talents were obvious to the teachers. On his return from Geneva, Gregory became an undergraduate at Edinburgh University where he began to study advanced mathematical topics and he also conducted experiments with polarised light. He was most influenced by William Wallace who held the chair of mathematics at Edinburgh University.

In October 1833, at the age of 20, Gregory entered Trinity College, Cambridge, receiving his B.A. in 1837, being ranked fifth wrangler, and his M.A. in 1841. However his interests were not only in mathematics for at Cambridge he continued to pursue his interest in chemistry which he had shown while an undergraduate at Edinburgh University. He was one of the founder members of the Cambridge Chemical Society but had broader interests than even mathematics and chemistry for he also studied physics, astronomy and botany. In October 1840 he became a Fellow of Trinity and also an assistant tutor at the College, devoting himself entirely to mathematics from this time on. At this time the Cambridge Mathematical Journal was beginning publication and Gregory became its first editor. Many of the papers in the early parts of the Journal are written by Gregory himself. Gregory declined a chair in Toronto in 1841 due to ill health. He returned to Edinburgh, where he was an unsuccessful applicant for a chair, but he died there shortly afterwards in his father's house, Canaan Lodge, at the age of 30.

His main contribution was his theory of algebra which he defined as the study of the combinations defined by the laws of operation to which they were subject. This is one of the first definitions of modern algebra. His work in this area is described in the paper On the real nature of symbolic algebra which Gregory published in the Transactions of the Royal Society of Edinburgh. In this work Gregory built on the foundations of Peacock but went far further towards modern algebra. Gregory, in his turn, had a major influence on Boole and it was through his influence that Boole set out on his innovative research.

Two other important works by Duncan Gregory are Examples of the Processes of the Differential and Integral Calculus and A Treatise on the Application of Analysis to Solid Geometry. The first became an important text at Cambridge which, by this time, had accepted Peacock, Herschel and Babbage's Analytical Society reforms, and continental methods of calculus were being taught in Cambridge. The second work was unfinished at his death but completed and published the following year.

He is described in [2] as follows:-

On the whole, his work reveals a vast acquaintance with continental mathematics, and is often enlivened with historical remarks. The quality of his mathematical advances was indeed unusual for one who never held a senior position in the university. Of an amiable disposition and an active disinterested kindness, he unfailingly shared with others the extent and variety of his information, and his experience as an editor.


 

  1. E Koppelmann, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830901729.html
  2. Biography by H R Luard, rev. Maria Pantekie, in Dictionary of National Biography (Oxford, 2004).

Articles:

  1. R L Ellis, Biographical memoir, in W Walton (ed.), The mathematical writings of D F Gregory (1865), xi-xxiv.
  2. H R Luard, Duncan Farquharson Gregory, Dictionary of National Biography.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.