المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24
من آداب التلاوة
2024-11-24
مواعيد زراعة الفجل
2024-11-24
أقسام الغنيمة
2024-11-24
سبب نزول قوله تعالى قل للذين كفروا ستغلبون وتحشرون الى جهنم
2024-11-24


Augustus De Morgan  
  
65   01:59 مساءاً   date: 19-10-2016
Author : S E De Morgan
Book or Source : Memoir of Augustus De Morgan by his wife Sophia Elizabeth De Morgan
Page and Part : ...


Read More
Date: 30-10-2016 112
Date: 5-11-2016 211
Date: 26-10-2016 88

Born: 27 June 1806 in Madura, Madras Presidency, India (now Madurai, Tamil Nadu, India)
Died: 18 March 1871 in London, England


Augustus De Morgan's father John was a Lieutenant- Colonel who served in India. While he was stationed there his fifth child Augustus was born. Augustus lost the sight of his right eye shortly after birth and, when seven months old, returned to England with the family. John De Morgan died when Augustus was 10 years old.

At school De Morgan did not excel and, because of his physical disability

... he did not join in the sports of other boys, and he was even made the victim of cruel practical jokes by some schoolfellows.

De Morgan entered Trinity College Cambridge in 1823 at the age of 16 where he was taught by Peacock and Whewell - the three became lifelong friends. He received his BA but, because a theological test was required for the MA, something to which De Morgan strongly objected despite being a member of the Church of England, he could go no further at Cambridge being not eligible for a Fellowship without his MA.

In 1826 he returned to his home in London and entered Lincoln's Inn to study for the Bar. In 1827 (at the age of 21) he applied for the chair of mathematics in the newly founded University College London and, despite having no mathematical publications, he was appointed.

In 1828 De Morgan became the first professor of mathematics at University College. He gave his inaugural lecture On the study of mathematics . De Morgan was to resign his chair, on a matter of principle, is 1831. He was appointed to the chair again in 1836 and held it until 1866 when he was to resign for a second time, again on a matter of principle.

His book Elements of arithmetic (1830) was his second publication and was to see many editions.

In 1838 he defined and introduced the term 'mathematical induction' putting a process that had been used without clarity on a rigorous basis. The term first appears in De Morgan's article Induction (Mathematics) in the Penny Cyclopedia. (Over the years he was to write 712 articles for the Penny Cyclopedia.) ThePenny Cyclopedia was published by the Society for the Diffusion of Useful Knowledge, set up by the same reformers who founded London University, and that Society also published a famous work by De Morgan The Differential and Integral Calculus.

In 1849 he published Trigonometry and double algebra in which he gave a geometric interpretation of complex numbers.

He recognised the purely symbolic nature of algebra and he was aware of the existence of algebras other than ordinary algebra. He introduced De Morgan's laws and his greatest contribution is as a reformer of mathematical logic.

De Morgan corresponded with Charles Babbage and gave private tuition to Lady Lovelace who, it is claimed, wrote the first computer program for Babbage.

De Morgan also corresponded with Hamilton and, like Hamilton attempted to extend double algebra to three dimension. In a letter to Hamilton, De Morgan writes of his correspondence with Hamilton and William Hamilton. He writes

Be it known unto you that I have discovered that you and the other Sir W. H. are reciprocal polars with respect to me (intellectually and morally, for the Scottish baronet is a polar bear, and you, I was going to say, are a polar gentleman). When I send a bit of investigation to Edinburgh, the W. H. of that ilk says I took it from him. When I send you one, you take it from me, generalise it at a glance, bestow it thus generalised upon society at large, and make me the second discoverer of a known theorem.

In 1866 he was a co-founder of the London Mathematical Society and became its first president. De Morgan's son George, a very able mathematician, became its first secretary. In the same year De Morgan was elected a Fellow of the Royal Astronomical Society.

De Morgan was never a Fellow of the Royal Society as he refused to let his name be put forward. He also refused an honorary degree from the University of Edinburgh. He was described by Thomas Hirst thus:-

A dry dogmatic pedant I fear is Mr De Morgan, notwithstanding his unquestioned ability.

Macfarlane remarks that

... De Morgan considered himself a Briton unattached neither English, Scottish, Welsh or Irish.

He also says

He disliked the country and while his family enjoyed the seaside, and men of science were having a good time at a meeting of the British Association in the country he remained in the hot and dusty libraries of the metropolis. ... he had no ideas or sympathies in common with the physical philosopher. His attitude was doubtless due to his physical infirmity, which prevented him from being either an observer or an experimenter. He never voted in an election, and he never visited the House of Commons, or the Tower, or Westminster Abbey.

De Morgan was always interested in odd numerical facts and writing in 1864 he noted that he had the distinction of being x years old in the year x2 (He was 43 in 1849). Anyone born in 1980 can claim the same distinction.


1.     J M Dubbey, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
http://www.encyclopedia.com/doc/1G2-2830901138.html

2.     Biography in Encyclopaedia Britannica. 
http://www.britannica.com/eb/article-9029609/Augustus-De-Morgan

Books:

3.     S E De Morgan, Memoir of Augustus De Morgan by his wife Sophia Elizabeth De Morgan (London, 1882).

Articles:

4.     Augustus De Morgan, Monthly Notices of the Royal Astronomical Society 32 (1872), 112-118.

5.     N L Biggs, De Morgan on map colouring and the separation axiom, Arch. Hist. Exact Sci. 28 (2) (1983), 165-170.

6.     N L Biggs, E K Lloyd and R J Wilson, C S Peirce and De Morgan on the four-colour conjecture, Historia Math. 4 (1977), 215-216.

7.     E V Cherkasova, Definition of transformation group in De Morgan's book 'On the foundation of algebra' (Russian), Voprosy Istor. Estestvoznan. i Tekhn. (1) (1992), 90-92.

8.     G B Halsted, Biography : De Morgan, Amer. Math. Monthly 4 (1897), 1-5.

9.     B S Hawkins, De Morgan, Victorian syllogistic and relational logic, Modern Logic 5 (2) (1995), 131-166.

10.                        B S Hawkins, A reassessment of Augustus De Morgan's logic of relations : a documentary reconstruction, Internat. Logic Rev. (19-20) (1979), 32-61.

11.                        L M Laita, Influences on Boole's logic : the controversy between William Hamilton and Augustus De Morgan, Ann. of Sci. 36 (1) (1979), 45-65.

12.                        A Macfarlane, Lectures on Ten British Mathematicians of the Nineteenth Century (New York, 1916), 19-33. Brr> http://www.gutenberg.net/etext06/tbmms10p.pdf

13.                        B H Neumann, Augustus De Morgan, Bull. London Math. Soc. 16 (1984), 575-589.

14.                        H M Pycior, Augustus De Morgan's algebraic work : the three stages, Isis 74 (272) (1983), 211-226.

15.                        A Rice, Augustus De Morgan: Historian of science, History of Science 34 (1996), 201-240.

16.                        A Rice, Augustus De Morgan (1806-1871), The Mathematical Intelligencer 18 (3) (1996), 40-43.

17.                        J L Richards, Augustus De Morgan, the history of mathematics, and the foundations of algebra, Isis 78 (291) (1987), 7-30.

18.                        G C Smith, De Morgan and the laws of algebra, Centaurus 25 (1-2) (1981/82), 50-70.

19.                        G C Smith, De Morgan and the transition from infinitesimals to limits, Austral. Math. Soc. Gaz. 7 (2) (1980), 46-52.

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.