Read More
Date: 11-8-2016
926
Date: 29-8-2016
1036
Date: 30-8-2016
1050
|
Coupled Oscillators
Two identical harmonic oscillators in one dimension each have mass m and frequency ω. Let the two oscillators be coupled by an interaction term Cx1x2, where C is a constant and x1 and x2 are the coordinates of the two oscillators. Find the exact spectrum of eigenvalues for this coupled system.
SOLUTION
The Hamiltonian of the system is
(1)
The problem is easily solved in center-of-mass coordinates. So define
(2)
These new coordinates are used to rewrite the Hamiltonian. It now decouples into separate x- and y- parts:
(3)
(4)
(5)
The x-oscillator has a frequency and eigenvalues hΩx (nx + 1/2), where nx is an integer. The y-oscillator has a frequency of and eigenvalues hΩy (ny + 1/2), where ny is an integer.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|