المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24


Betatron  
  
1531   04:52 مساءاً   date: 7-8-2016
Author : Sidney B. Cahn Boris E. Nadgorny
Book or Source : A GUIDE TO PHYSICS PROBLEMS
Page and Part : part 1 , p 75


Read More
Date: 14-8-2016 1495
Date: 2-8-2016 1154
Date: 18-8-2016 1075

Betatron

Consider the motion of electrons in an axially symmetric magnetic field. Suppose that at z = 0 (the “median plane”) the radial component of the

Figure 1.1

magnetic field is 0, so B(z = 0) = B (r). Electrons at z = 0 then follow a circular path of radius R (see Figure 1.1).

a) What is the relationship between the electron momentum p and the orbit radius R?

In a betatron, electrons are accelerated by a magnetic field which changes with time. Let (B) equal the average value of the magnetic field over the plane of the orbit (within the orbit), i.e.,

where Φ is the magnetic flux through the orbit. Let B0 equal B(r = R, z = 0).

b) Suppose (B) is changed by an amount (ΔB) and B0 is changed by ΔB0. How must (ΔB) be related to ΔB0 if the electrons are to remain at radius R as their momentum is increased?

c) Suppose the z component of the magnetic field near r = R and z = 0 varies with r as Bz (r) = B0(R) (R/r)n. Find the equations of motion for small departures from the equilibrium orbit in the median plane. There are two equations, one for small vertical changes and one for small radial changes. Neglect any coupling between radial and vertical motion.

d) For what range of n is the orbit stable against both vertical and radial perturbations?

SOLUTION

a) Assume we have a magnetic field that is constant along and perpendicular to the plane of the orbit B (z = 0) = B(R) . The Lorentz force gives

(1)

We can substitute the energy ε for the momentum by using

and since the energy does not change in the magnetic field we have

(2)

or, separating into components,

(3)

(4)

where

(5)

Following a standard procedure, we multiply (4) by and add it to (3), which yields

(6)

where u = vx + ivy or

(7)

where A and α are real. Separating real and imaginary parts of (7), we obtain

(8)

(9)

From (8) and (9), we can see that

where v0 is the initial velocity of the particle, which as we assumed moves only in the x – y plane. Integrating again, we find

(10)

So the radius R is given by

(11)

and

(12)

b) From (12), the momentum

(13)

where B0 =B0 (R). Assuming that R does not change, we find from (13) that

(14)

If the magnetic field through the orbit is increased, a tangential electric field will be produced at the position of the orbit:

(15)

Therefore the rate of increase of the momentum is

(16)

Integrating (16), we obtain

(17)

Equating (14) and (17), we have

(18)

indicating that the change in flux through the orbit must be twice that which would have been obtained if the magnetic field were spatially uniform (Betatron rule 2:1).

c) Consider first the vertical displacement (we assume that the vertical and radial motions are decoupled)

(19)

where Since vz is much smaller than the velocity in the x–y plane, we disregard any change in γ due to changes in vz

(20)

where Br (R) is the radial B field at a radius R. Neglecting the space charge current and displacement current and using cylindrical coordinates, we may write

So

or, for small z,

(21)

Using the expression for Bz given in the problem,

and substituting it into (21) and then (20), we obtain

(22)

So

(23)

Taking v = ΩR from (12), (23) becomes

(24)

Therefore (24) exhibits oscillatory behavior along the z-axis which is stable if nΩ2 > 0 and so n > 0. The period of oscillation is then

(25)

For the radial motion, the Lorentz force FL is

(26)

For small deviations from equilibrium ρr – R, we can write (26) in the form

(27)

where we again used (12) for the cyclotron frequency. We must also consider the centrifugal force

(28)

where we used the conservation of canonical angular momentum

Now, for small ρ,

(29)

Combining (27) and (29), we obtain

(30)

Since Fc (R) + FL (R) = 0 at equilibrium, we can write

(31)

Again, as for the vertical motion, we have an oscillation of frequency

This oscillation is stable if 1 – n > 0, or n < 1.

d) The condition for both radial and vertical stability will be the intersection of the two conditions for n, so




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.