المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

critical period
2023-08-02
مجموعة فيتامين B6 Pyridoxine Graup
8-2-2021
الحاج ميرزا رضي ذو النوري التبريزي
14-8-2020
Homeotic Genes
18-5-2016
أسئلة يجب على المحرر الإجابة عنها لإعداد حديث صحفي
19-4-2022
قصة موسى (عليه السلام)
5-05-2015

Connectedness  
  
1234   02:06 مساءاً   date: 28-7-2016
Author : Jean-Claude Fournier
Book or Source : Graph Theory and Applications
Page and Part : 35-36


Read More
Date: 28-2-2022 1857
Date: 18-5-2022 1508
Date: 15-5-2022 1396

A G graph is said to be connected if any two vertices of this graph are linked by a path in G. Otherwise, the graph is a disconnected graph.

  The connected components of a graph G are the maximal connected induced subgraphs of G. Maximal means here that the subgraph mentioned is not itself a proper subgraph, that is with strictly fewer vertices, of a connected subgraph of G. Obviously, a graph is connected if and only if it has only  one connected component.

  We verify that the connected components of a graph are subgraphs pairwise disjoint, that is having pairwise no common vertices and no common edges. It defines the decomposition into connected components of the graph (see Figure 1.1 for an example). This decomposition is unique.

Figure 1.1. A disconnected graph and its three connected components: C1,C2, C3

                  It is also possible to define in algebraic language the connected components of a graph G =(X,E) as the subgraphs induced by equivalence classes over X, defined by the relation: the vertices x and y are linked by a path. This binary relation is in fact an equivalence relation on the set X  (reflexive, symmetric and transitive).

To finish connectedness, let us just mention the following proposition:

If a graph possesses a spanning subgraph which is connected, it is itself connected. This proposition is one of many small propositions which are often not proved or even stated. Nevertheless it is useful for a beginner in graph theory to practice by proving them rigorously at least once. If we can do this easily, then all is well, at least so far into the theory. If we do not succeed, we should go back over the preceding pages or maybe rethink our personal logic.


Graph Theory  and Applications ,Jean-Claude Fournier, WILEY, page(35-36)

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.