المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تعويد الأولاد على المستحبات وأثره
2024-11-06
استحباب الدعاء في طلب الولد بالمأثُورِ
2024-11-06
المباشرة
2024-11-06
استخرج أفضل ما لدى القناص
2024-11-06
الروايات الفقهيّة من كتاب علي (عليه السلام) / الطلاق.
2024-11-06
الروايات الفقهيّة من كتاب علي (عليه السلام) / النكاح.
2024-11-06

جواز التزيّن برفيع الثياب.
4-1-2016
الهلين أو اليونان.
2024-01-02
عائلة القراد اللين Family of Soft Ticks
5-8-2021
تفسير الآيات (72-73) من سورة النساء
9-12-2016
Ergodic Measure
14-7-2020
أُريد أن أعرف مسألة تحريف القرآن عند المسلمين ؟
6-9-2021

Peter Barlow  
  
144   02:15 مساءاً   date: 9-7-2016
Author : H I Sharlin
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 7-7-2016 136
Date: 7-7-2016 44
Date: 9-7-2016 78

Born: 15 October 1776 in Norwich, England
Died: 1 March 1862 in Kent, England

 

Peter Barlow was self-educated but this education was sufficiently good that he was able to compete successfully to became an assistant mathematics master at the Royal Military Academy at Woolwich. He was appointed to the post in 1801 and he began publishing mathematical articles in the Ladies Diary and he became sufficiently well established as a leading authority on mathematics that after a while he was asked to contribute various articles on mathematics for encyclopaedias.

In addition to these articles, Barlow also published several important books, for example in 1811 he published An elementary investigation of the theory of numbers and three years later he published A new mathematical and philosophical dictionary.

He is remembered most for two important contributions. In 1814 he produced a second book, in addition to the one described above, entitled New mathematical tables. These soon became known as Barlow's Tables and this work gives factors, squares, cubes, square roots, reciprocals and hyperbolic logarithms of all numbers from 1 to 10 000. The book [2]:-

... was considered so accurate and so useful that it has been regularly reprinted ever since.

In the mathematical library at the University of St Andrews we have several well worn copies of these tables which must have been used intensely for many years. Today, however, they are only of historical interest since they were made completely obsolete by calculators and computers.

Barlow's second major contribution makes his name still well known by amateur astronomers today. He invented the Barlow lens, a telescope lens consisting of a colourless liquid between two pieces of glass [1]:-

The "Barlow lens", a modification of this telescope lens, is a negative achromatic combination of flint glass and crown glass.

In his lifetime Barlow's greatest achievement was being elected to the Royal Society and receiving its Copley medal for his work on magnetism [2]:-

In 1819 Barlow began work on the problem of deviation in ship compasses caused by the presence of iron in the hull. For his method of correcting the deviation by juxtaposing the compass with a suitably shaped piece of iron, he was awarded the Copley Medal ...

These were not his only contributions, however. In 1817 he published Essay on the strength and stress of timber which contains data he collected while conducting experiments at the military establishments in Woolwich. He also worked on the design of bridges, in particular working from 1819 to 1826 with Thomas Telford on the design of the bridge over the Menai Strait. It was the first major modern suspension bridge.

Westminster Bridge was built across the Thames in London, despite opposition from city merchants, in the 1740s and rebuilt by Charles Labelye in the 1750s. However when there was a move to demolish and replace this old bridge in the 1820s, Barlow was consulted to compute how the tides on the Thames would be affected by the removal of this structure. After Barlow reported, New London Bridge was designed by John Rennie Sr and built by his son John Rennie Jr.

Barlow was active during the period of railway building in Britain. George Stephenson was the first to build railways in Britain. In 1825 the first train ran from Darlington to Stockton while the 30-mile line from Liverpool and Manchester was opened to traffic in 1830. Stephenson, who constructed both projects, believed that gradients should be less than 1 percent and that curves should have very wide radii of at least a kilometre. Barlow was appointed as royal commissioner for railways and in the 1830s and 1840s he conducted several experiments to see if the limitation on gradients and radius of curvature proposed by Stephenson was correct. He also tried to determine the most efficient shape for the rails.


 

  1. H I Sharlin, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830900269.html
  2. Biography in Encyclopaedia Britannica. 
    http://www.britannica.com/eb/article-9013393/Peter-Barlow

Articles:

  1. Peter Barlow, Dictionary of National Biography.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.