المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
استخدامات الطاقة الشمسية Uses of Solar Radiation
2024-11-28
Integration of phonology and morphology
2024-11-28
تاريخ التنبؤ الجوي
2024-11-28
كمية الطاقة الشمسية الواصلة للأرض Solar Constant
2024-11-28
صفاء السماء Sky Clearance
2024-11-28
زاوية ميلان المحور Obliquity
2024-11-28

عمليـة تـطويـر المـنتـج الجـديـد (الأهداف المثالية Typical Objectives)
2023-06-09
Lars Hörmander
19-3-2018
Bukusu: nasal+consonant combinations
29-3-2022
Fluctuation Test
10-5-2016
المهدوية (فلسفة عالمية كبرى).
2023-03-29
البيئة الجغرافية والتنوع السلالي ـ الحواجز الجغرافية
23-2-2020

PHOTOELECTRIC EFFECT  
  
3326   04:38 مساءاً   date: 8-3-2016
Author : Mark Csele
Book or Source : FUNDAMENTALS OF LIGHT SOURCES AND LASERS
Page and Part : p27

PHOTOELECTRIC EFFECT

The photoelectric effect provides proof of the relationship between energy and frequency as brought to light in the Planck relationship. It also demonstrates the particle nature of light. The effect is observed when photons of light strike a metal surface in a vacuum and electrons are ejected in response to bombardment by these incident photons. This is the principle by which phototubes work: Incident light causes ejection of electrons, which manifests itself as current flow in the tube. As light of a given wavelength (or frequency) strikes the metal, photoelectrons are ejected with various energies; however, it was found that the maximum kinetic energy of the photoelectrons ejected was sharply defined and was dependent solely on wavelength, not on the intensity of the incident beam of light. More important for our purposes of illustrating the photon concept was the discovery that there is a minimum frequency for incident photons below which no photoelectrons are ejected at all; this minimum frequency depends on the metal used. For potassium, a common metal used for photocathodes, incident photons must have energy of at least 2.0 eV to cause photoelectron ejection (and hence current flow). Photons of red light have energies below 2.0 eV and hence will not cause current flow, regardless of intensity, whereas photons of blue light (which have energies of about 3 eV) cause current to flow in the tube, as illustrated in Figure 1.1. Classical wave theory does not allow an explanation of the photoelectric effect. One might argue that incident waves of light perturb the electrons in the metal, causing ejection. It would be expected, then, that the maximum kinetic energy of the photoelectrons ejected would depend on the intensity of the incoming beam, which it does not. Classical wave theory also cannot account for the minimum frequency required for photoelectron emission. On the other hand, Einstein’s photon concept explains this effect as the simple absorption of a photon by an individual electron in an atom of metal. Some electrons simply absorb enough energy to escape the surface of the metal. The threshold energy required to observe this is also

Figure 1.1. Photoelectric effect.

explained by the fact that electrons will be bound to their atoms of metal by some energy that must be overcome to allow escape. If incident photons of light lack this minimum energy, they can still be absorbed by the atoms of metal but will not give the electrons enough energy to escape their bonds and so will not be ejected. Similar evidence1 exists in a host of other experiments, showing the photon concept to be a reasonable explanation of effects observed that cannot be explained through the use of classical wave mechanics. In one such experiment, illustrating the Compton effect, x-ray photons are beamed at a block of paraffin, where they collide with electrons. The resulting collision follows the laws of classical dynamics, with the photon losing energy in the collision, as evidenced by the shift toward a longer wavelength (i.e., it gives energy to the electron during the collision). In this case, the x-ray photons behave exactly like little billiard balls.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.