المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 12052 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الجبهة الدافئة ( Warm Front)
2025-04-15
الجبهة الباردة ( Cold Front)
2025-04-15
الجبال والجبهات الهوائية
2025-04-15
السيلينيوم Selenium
2025-04-15
العوامل المسؤولة عن تحديد اعداد المنخفضات الجبهوية ضمن السلسلة
2025-04-15
مراحل تكوين المنخفض الجبهوي
2025-04-15



كمية التحرك الزاوية والقوة المركزية  
  
755   01:17 صباحاً   التاريخ: 2024-09-30
المؤلف : مايكل كوهين
الكتاب أو المصدر : الميكانيكا الكلاسيكية مقدمة أساسية
الجزء والصفحة : ص 226 – ص 229
القسم : علم الفيزياء / الفيزياء الكلاسيكية / الميكانيك /


أقرأ أيضاً
التاريخ: 2024-03-10 1555
التاريخ: 7-3-2016 3200
التاريخ: 3-12-2020 2086
التاريخ: 31-8-2017 2968

المعادلة (8–4) لها نتائج مهمة عند تطبيقها على مسألة القوة المركزية؛ أي الجسيم المتحرك بتأثير قوة متجهة دائمًا لنقطة ثابتة.

إذا أخذنا نقطة الأصل O عند هذه النقطة الثابتة، فإن العزم يتلاشى؛ لأن  و  متوازيان في نفس الاتجاه (أو متوازيان بعكس الاتجاه)؛ وبالتالي فإن ، وتكون كمية التحرك الزاوية  ثابتة. ثبوت  يقتضي ضمنًا أنْ:

(أ) تقع حركة الجسيم في مستوى ثابت، يسمى المستوى المحتوي على مركز القوة، والموضع الابتدائي للجسيم، ومتجه السرعة الابتدائي للجسيم.

(ب) يمسح المتجه الواصل من مركز القوة إلى الجسيم مساحات بمعدل ثابت (هذا هو قانون كبلر الثاني، وهو خاصية لجميع القوى المركزية، وليس فقط لقانون التربيع العكسي)؛ وهذا مع حركة الجسيم في هذا المستوى.

لإثبات (أ)، نمرر مستوى خلال مركز القوة O عموديًّا على المتجه الثابت . تقتضي المعادلة (8–2) ضمنًا أن يكون  عموديًا على ؛ وبالتالي فإن  يقع في المستوى. لكن بما أن  (حيث  و هما متجها الموضع والسرعة الابتدائيان)، فإن المستوى العمودي على  يكون هو المستوى الذي يحتوي على و.

شكل 1–8: اتجاه .

 

في إثبات (أ)، استخدمنا فقط حقيقة ثبوت اتجاه . مقدار ثابت أيضًا. باستخدام تعريف الضرب المتجهي، نجد أن مقدار  هو:

حيث الزاوية θ بين  و، وv sin θ = vtan السرعة المماسية (أي مركبة السرعة العمودية على ). المساحة المظللة في شكل 8–2 هي المساحة التي يمسحها المتجه  في الفترة الزمنية الصغيرة Δt. تكون المساحة خلال قيم الدرجة الأولى في Δt هي ΔA = (1/2) rvtan Δt؛ وبالتالي فإن المعدل الذي تمسح به المساحة هو
dA/dt = (1/2) rvtan = L/2m ولأن L ،ثابتة، فإن dA/dt ثابتة.

شكل 8–2: مساحة ممسوحة بواسطة المتجه النصف قطري.

شكل 8–3: جسيم يتحرك على منضدة أفقية في مسار دائري محافظ عليه بواسطة شد في الوتر المربوط في الجسيم في مثال 8–1.

 

مثال 8–1 (جسيم يتحرك على مستوى أفقي في مسار دائري). جسيم كتلته m يتحرك على سطح منضدة أفقية ملساء، مقيد بوتر يمر خلال ثقب في المنضدة (شكل 8–3). في البداية يتحرك الجسيم بسرعة مقدارها v1 في دائرة نصف قطرها r1. يُسحب الوتر ببطء حتى يتحرك الجسيم في دائرة أصغر نصف قطرها r2. احسب:

(أ) مقدار سرعة الجسيم الجديدة v2.

(ب) النسبة T2/T1 (حيث T1 وT2 هما الشدان الابتدائي والنهائي في الوتر).

(جـ) الشغل المبذول على الجسيم بواسطة الوتر.

الحل. القوة التي يؤثر بها الوتر على الجسيم موجهة دائما نحو الثقب؛ وبالتالي تكون كمية التحرك الزاوية محفوظة؛ أي إن v1r1 = v2r2؛ وبالتالي فإن v2 = v1 (r1/r2). وبما أن T = mv2/r فيكون لدينا:

 

من المفيد أيضًا تعليميا حساب الشغل مباشرة من تعريف  (لاحظ أن الشد في الوتر يتغير مع سحب الوتر لذلك لا نستطيع التعامل مع القوة على أنها ثابت). في اللحظة التي يكون عندها طول الوتر (من الثقب إلى الجسيم) r، يكون الشد (من المعادلة (6–8)) 3(T = (mv12/r1) (r1/r، والقوة المؤثرة على الجسيم ؛ حيث  متجه وحدة يشير في الاتجاه الخارج من نقطة المركز عند تغيير طول الوتر من r إلى r + dr (لاحظ أن dr سالبة عند تقصير الوتر)، تكون إزاحة الجسم هي  مجموع عليها مركبة مماسية لا تساهم في الشغل؛ وبذلك يكون:

 

وذلك بالاتفاق مع المعادلة (7–8).

بالإضافة إلى ذلك، إذا طبقنا نظرية الشغل والطاقة على العملية المتناهية الصغر التي يتغير فيها طول الوتر من r إلى r + dr ويتغير مقدار سرعة الجسيم من v إلى v + dv، نجد أن (mv2/r)dr = (1/2)m(v + dv)2 – (1/2)mv2– مما يؤدي إلى dr/r = – dv/v؛ وبذلك يكون 0 = (d(lnv + lnr مما يقتضي ضمنًا أن يكون
lnv + lnr = const؛ أي إن vr = ثابت، وهو نص حفظ كمية التحرك الزاوية. الميكانيكا بنية منطقية أنيقة ومتناسقة.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.