المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
Provision of positive support Case study
2025-04-05
القصيدة الطويلة وقصيدة القناع
2025-04-05
اسم الفاعل
2025-04-05
Understanding the needs of young people in public care
2025-04-05
مرحلة الشيخوخة للنهر
2025-04-05
النقل
2025-04-05

العوامل البيئية المناسبة للباباظيا
7-1-2016
الحد الوسط من المحبة تجاه الطفل
19-6-2016
المسيح عبد الله
2024-05-09
تطور العلم والمحاسبة
5-3-2018
مشكلات المراهق في المدرسة الثانوية
29-1-2020
أثر الكحول على دوران الدم
4-6-2019


حد جبري Algebraic Term  
  
955   12:09 صباحاً   التاريخ: 6-11-2015
المؤلف : صالح رشيد بطارسه
الكتاب أو المصدر : معجم الرياضيات
الجزء والصفحة : 121
القسم : الرياضيات / الجبر / مواضيع عامة في الجبر /


أقرأ أيضاً
التاريخ: 8-3-2017 1478
التاريخ: 13-2-2019 2499
التاريخ: 23-2-2019 826
التاريخ: 17-2-2019 4611

الحدود الجبرية هي اعداد حقيقة ممثلة بالأرقام واعداد عامة ممثلة بالحروف الهجائية , يفصل بينها إشارات الضرب والقسمة فقط كما يلي :

 وهكذا .

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.