المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الموطن الاصلي للفجل
2024-11-24
التربة المناسبة لزراعة الفجل
2024-11-24
مقبرة (انحور خعوي) مقدم رب الأرضين في مكان الصدق في جبانة في دير المدينة
2024-11-24
اقسام الأسارى
2024-11-24
الوزير نفررنبت في عهد رعمسيس الرابع
2024-11-24
أصناف الكفار وكيفية قتالهم
2024-11-24


Scaling  
  
1825   11:20 صباحاً   date: 30-10-2015
Author : Peters, Robert H
Book or Source : The Ecological Implications of Body Size
Page and Part :


Read More
Date: 19-10-2015 2077
Date: 21-10-2015 1918
Date: 22-10-2015 2049

Scaling

Scaling can be defined as the structural and functional consequences of a change in size and scale among similarly organized animals. To examine what “consequences of a change in size” means, consider what would hap­pen if one scaled up a cockroach simply by expanding it by a factor of 100 in each of its three dimensions. Its mass, which depends on volume, would increase by a factor of 1 million (100 x 100 x 100). The ability of its legs to support that mass, however, depends on the cross-sectional area of the leg, which has only increased by a factor of ten thousand (100 x 100). Similarly, its ability to take in oxygen through its outer surface will also grow only by ten thousand, since this too is a function of surface area. This disparity be­tween the rapid growth in volume and the slower growth in surface area means the super-sized cockroach would be completely unable to support its weight or acquire enough oxygen for its greater body mass.

The consequences of body size on the physiology, ecology, and even behavior of animals, can be appreciated if one examines in more detail dif­ferences in function between organisms of widely different sizes. For ex­ample, consider that a 4-ton elephant weighs about 1 million times more than a 4-gram shrew, and further consider that the shrew consumes enough food daily to equal about 50 percent of its body weight. Imagine then what the daily food consumption of 1 million shrews would be (2 tons of food), and realize that the elephant is probably consuming instead only about 100 pounds of food. From this example it is obvious that daily food require­ments do not scale directly with body mass. In fact, most body processes scale to some proportion of body mass, rarely exactly 1.0.

Allometric Analysis

How can one determine the relationship of body processes to body mass? The best technique for uncovering the relationship is to plot one variable (for example, food requirements or metabolic rate) against body mass for groups of similar animals (for example, all mammals, or even more specifi­cally, carnivorous mammals). Such a plot is called an X-Y regression. Us­ing a statistical technique called least-squares regression gives an equation that best fits the data. The equation for scaling of any variable to body mass is Y = aW, where Yis the variable to be determined, Wis the animal body mass (or weight), and a and b are empirically derived constants from the re­gression. The exponent b is of particular interest, since it gives the scaling metabolism chemical relationship one is looking for in nonlinear relations, such as that of me­tabolism and body mass. This mathematical technique is called Allometric analysis. Allometric analysis can be used to predict the capacity or require­ments of an unstudied animal, one that might be too rare to collect or too difficult to maintain in captivity for study.

Metabolism

Using this technique, several interesting relationships between animal structure and function have been uncovered. Among the most well stud­ied is the relationship between animal metabolism and body mass, intro­duced above, in which M (metabolism) scales to the 0.75 power of body weight (M = aW075). This means that while the total energy needs per day of a large animal are greater than that of a small animal, the energy re­quirement per gram of animal (mass-specific metabolism) is much greater for a small animal than for a large animal. Why should this be the case? For birds and mammals that maintain a constant body temperature by pro­ducing heat, the increased mass-specific metabolism of smaller animals was once thought to be a product of their greater heat loss from their pro­portionately larger surface area-to-volume ratio. However, the same math­ematical relationship between metabolism and body mass has been found to hold for all animals studied, and even unicellular organisms as well. Therefore, the relationship of metabolism to body size seems to represent a general biological rule, whose basis eludes scientific explanation at this time.

Allometric analysis has shown that different body processes, involving different organs, scale with different exponents of body mass. For example, blood volume, heart weight, and lung volume all scale almost directly with body mass (exponent = 0.99-1.02). Thus, the oxygen delivery system (heart and lungs) is directly proportional to body mass, even though the metabo­lism, and thus oxygen requirements, of the body scale with body mass to the 0.75 power. If the hearts are proportionately the same size for large and small animals, but mass-specific oxygen requirements are higher for small animals, then this implies that hearts in small animals must pump faster to deliver the greater quantity of oxygenated blood. Similarly, lung ventilation rates of smaller animals must be higher than those of larger animals. Both predictions have been borne out by measurements that support this con­clusion from the allometric analysis.

Locomotion

The energy requirement for locomotion also scales with body size, in much the same way that metabolism does. But here another factor comes into play: the type of locomotion. It is obvious that locomotion is much more ener­getically expensive than sitting still, but are some types of locomotion more expensive than others? Let’s compare running, swimming, and flying. In plotting the cost of running versus body mass, one notes that metabolic cost increases directly as a function of mass. What about swimming and flying?

Again, cost increases with mass, but the regression lines for these allometric analyses exhibit different slopes than the one for runners. As might be expected the cost (per kilometer per gram of animal) is lowest for swim­mers, where the body mass is supported by buoyancy; next highest for fly­ers, where body mass is partially supported by air mass; and highest for runners, who lose energy to friction with the ground. While water is more viscous to move through than air, swimmers (especially fish) have stream­lined bodies that reduce frictional drag and reduce cost.

Allometric analysis helps explain why animals can only get so large or so small. Limits placed on structural support, amount of gut surface area re­quired to process the required energy per day, and cost of locomotion be­come limiting factors for large animals. High surface area-to-volume ratios, high metabolic costs of existence, and limits on the speed of diffusion and cell surface area become limiting factors for small animals. Thus, animal structural design has functional implications that determine physiological processes and ultimately the ability to exist under specific ecological con­straints.

References

Peters, Robert H. The Ecological Implications of Body Size. Cambridge: Cambridge Uni­versity Press, 1983.

Schmidt-Nielsen, Knut. How Animals Work. Cambridge: Cambridge University Press, 1972.

 

 




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.