المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
زكاة الذهب والفضة
2024-11-05
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05
أوجه الاستعانة بالخبير
2024-11-05
زكاة البقر
2024-11-05
الحالات التي لا يقبل فيها الإثبات بشهادة الشهود
2024-11-05
إجراءات المعاينة
2024-11-05

الأشخاص الذين يعود اليهم حق طلب إعادة المحاكمة
23-3-2022
علم الناسخ والمنسوخ
2023-12-17
مصنفات الشيخ المفيد
19/10/2022
Bouquet Graph
18-5-2022
أداب الحوار- 4- تقدير الخصم واحترامه
10-4-2022
Werner Romberg
14-11-2017

Paradox  
  
1828   08:24 مساءً   date: 15-2-2022
Author : Ball, W. W. R. and Coxeter, H. S. M
Book or Source : Mathematical Recreations and Essays, 13th ed. New York: Dover
Page and Part : ...


Read More
Date: 9-2-2022 742
Date: 30-1-2022 809
Date: 14-2-2022 1042

Paradox

A statement which appears self-contradictory or contrary to expectations, also known as an antinomy. Curry (1977, p. 5) uses the term pseudoparadox to describe an apparent paradox for which, however, there is no underlying actual contradiction. Bertrand Russell classified known logical paradoxes into seven categories.

Ball and Coxeter (1987) give several examples of geometrical paradoxes.


REFERENCES

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 84-86, 1987.

Bunch, B. Mathematical Fallacies and Paradoxes. New York: Dover, 1982.Carnap, R. Introduction to Symbolic Logic and Its Applications. New York: Dover, 1958.

Church, A. "Paradoxes, Logical." In The Dictionary of Philosophy, rev. enl. ed. (Ed. D. D. Runes). New York: Rowman and Littlefield, p. 224, 1984.

Curry, H. B. Foundations of Mathematical Logic. New York: Dover, 1977.

Czyz, J. Paradoxes of Measures and Dimensions Originating in Felix Hausdorff's Ideas. Singapore: World Scientific, 1994.

Erickson, G. W. and Fossa, J. A. Dictionary of Paradox. Lanham, MD: University Press of America, 1998.

Kasner, E. and Newman, J. R. "Paradox Lost and Paradox Regained." In Mathematics and the Imagination. Redmond, WA: Tempus Books, pp. 193-222, 1989.

Northrop, E. P. Riddles in Mathematics: A Book of Paradoxes. Princeton, NJ: Van Nostrand, 1944.

O'Beirne, T. H. Puzzles and Paradoxes. New York: Oxford University Press, 1965.Quine, W. V. "Paradox." Sci. Amer. 206, 84-96, Apr. 1962.

Székely, G. J. Paradoxes in Probability Theory and Mathematical Statistics, rev. ed. Dordrecht, Netherlands: Reidel, 1986.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.